Many bacterial genomes carry multiple prophages that compete with each other, potentially affecting the physiology, fitness, and pathogenicity of their hosts. However, molecular mechanisms of such prophage-prophage conflicts remain poorly understood. The genome of Shewanella oneidensis MR-1, a Gammaproteobacterium residing in aquatic environments and notable for its ability to reduce metal ions, harbours four prophages, two of which (LambdaSo and MuSo2) form infectious virions during biofilm formation. Here, we constructed indicator strains of LambdaSo and MuSo2 by deleting the corresponding prophages from the MR-1 chromosome and investigated their reproduction. Interestingly, the fitness of MuSo2 increased in the absence of LambdaSo, suggesting that prophage LambdaSo repressed MuSo2 reproduction. Partial deletion of LambdaSo from the MR-1 chromosome revealed that gene cluster R of LambdaSo, which was responsible for the switch to the lytic cycle and LambdaSo genome replication initiation, was necessary and sufficient to repress MuSo2. Furthermore, activation of cluster R genes facilitated replication of cluster R-encoding DNA and inhibited host and MuSo2 DNA replication. These findings suggest that LambdaSo represses MuSo2 propagation by inhibiting DNA replication during simultaneous induction. We predict that such a mechanism of inter-prophage interference is more widespread in bacteria than currently appreciated.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14592DOI Listing

Publication Analysis

Top Keywords

prophage lambdaso
8
muso2
8
shewanella oneidensis
8
oneidensis mr-1
8
lambdaso
8
lambdaso muso2
8
mr-1 chromosome
8
dna replication
8
replication
5
lambdaso replication
4

Similar Publications

Unlabelled: Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall.

View Article and Find Full Text PDF

Many bacterial genomes carry multiple prophages that compete with each other, potentially affecting the physiology, fitness, and pathogenicity of their hosts. However, molecular mechanisms of such prophage-prophage conflicts remain poorly understood. The genome of Shewanella oneidensis MR-1, a Gammaproteobacterium residing in aquatic environments and notable for its ability to reduce metal ions, harbours four prophages, two of which (LambdaSo and MuSo2) form infectious virions during biofilm formation.

View Article and Find Full Text PDF

Iron triggers λSo prophage induction and release of extracellular DNA in Shewanella oneidensis MR-1 biofilms.

Appl Environ Microbiol

September 2014

Department of Ecophysiology, Max Planck Institute for terrestrial Microbiology, Marburg, Germany Institute for Microbiology and Molecular Biology, Justus Liebig University, Giessen, Germany

Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms.

View Article and Find Full Text PDF

Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1.

ISME J

April 2011

Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany.

Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!