Graphene-based materials exhibit outstanding physical properties and so are potentially applicable in a great variety of fields. Unlike their corresponding oxides, graphite and graphene are not prone to functionalization. Diels-Alder reactions are among the scarce reactions that they can occur without disrupting their conjugated sp systems. Herein, the reaction between graphite and 3,6-di(2-pyridyl)-1,2,4,5-tetrazine under different conditions affords several graphene-based materials consisting of dipyridylpyridazine-functionalized few-layer graphene, multilayer graphene and graphite, the sheets of which act as ligands for the grafting of a europium complex. These three materials show strong red emission under 365 nm UV radiation. Their emitting particles can be visualized by confocal microscopy. The rich coordination chemistry of dipyridylpyridazine ligands has potential novel properties for similarly functionalized graphene-based materials grafted with other metal complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201900512 | DOI Listing |
3D Print Addit Manuf
December 2024
Materials Science and Technology Center (CCTM), Nuclear, and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo, São Paulo, Brazil.
This study describes a 3D fused deposition modeling (FDM) printing process using a graphene-impregnated polylactic acid (G-PLA) filament to create a new type of rigid, plastic, nonconductive, and anticorrosion layer. Therefore, the possibility of 3D printing a plastic layer using FDM methods is demonstrated herein. A commercial magnet such as N35 NdFeB can be used to produce an efficient shielding film by additive manufacturing.
View Article and Find Full Text PDFMicron
December 2024
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Graphene's exceptional physical properties, such as high thermal conductivity and mechanical strength, have attracted significant interest for its integration in transistors and thermal interface materials. While achieving various conformations of graphene is desirable for such applications, synthesizing graphene with target conformations remains a challenge. In this work, we present a method for synthesizing multilayer graphene with ridged conformations, using a microscale ridge-patterned copper (Cu) layer that was epitaxially deposited on a sapphire substrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
Graphene-based materials have gained attention for their promise in various applications owing to their two-dimensional structure. Functionalizing the graphene surface can help realize materials with noble properties. In this study, graphene was functionalized by plasma treatment in O, H, and Ar environments, and the effects on the NH gas-sensing performance were evaluated.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Electrical Engineering, École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada.
The importance of gas sensors is apparent as the detection of gases and pollutants is crucial for environmental monitoring and human safety. Gas sensing devices also hold the potential for medical applications as health monitoring and disease diagnostic tools. Gas sensors fabricated from graphene-based fibers present a promising advancement in the field of sensing technology due to their enhanced sensitivity and selectivity.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
Emissions of volatile organic compounds (VOCs) such as benzene, toluene, xylene, styrene, hexane, tetrachloroethylene, acetone, acetaldehyde, formaldehyde, isopropanol, etc., increase dramatically with accelerated industrialization and economic growth. Most VOCs cause serious environmental pollution and threaten human health due to their toxic and carcinogenic nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!