In certain regions of New York state, USA, Ixodes scapularis ticks can potentially transmit 4 pathogens in addition to Borrelia burgdorferi: Anaplasma phagocytophilum, Babesia microti, Borrelia miyamotoi, and the deer tick virus subtype of Powassan virus. In a prospective study, we systematically evaluated 52 adult patients with erythema migrans, the most common clinical manifestation of B. burgdorferi infection (Lyme disease), who had not received treatment for Lyme disease. We used serologic testing to evaluate these patients for evidence of co-infection with any of the 4 other tickborne pathogens. Evidence of co-infection was found for B. microti only; 4-6 patients were co-infected with Babesia microti. Nearly 90% of the patients evaluated had no evidence of co-infection. Our finding of B. microti co-infection documents the increasing clinical relevance of this emerging infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433014PMC
http://dx.doi.org/10.3201/eid2504.181509DOI Listing

Publication Analysis

Top Keywords

lyme disease
12
evidence co-infection
12
babesia microti
8
co-infections persons
4
persons early
4
early lyme
4
disease york
4
york usa
4
usa regions
4
regions york
4

Similar Publications

Lyme disease is commonly associated with musculoskeletal features, inflammatory and noninflammatory. The precise pathogenesis of the clinical features of this infection are complex and often multiple. A better understanding of how Borrelia burgdorferi causes these musculoskeletal manifestations is necessary in order to determine the proper treatment and eschew that which is unlikely to work, often associated with toxicities.

View Article and Find Full Text PDF

The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).

View Article and Find Full Text PDF

Despite its importance in pathogenesis, the hematogenous dissemination pathway of is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In -infected monolayers, we observed ~55% of wild-type spirochetes crossing the monolayer.

View Article and Find Full Text PDF

We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii, with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6.

View Article and Find Full Text PDF

Diagnosis of equine Lyme borreliosis (LB), an infection caused by members of the Borrelia burgdorferi sensu lato complex (Bbsl), is challenging due to the nonspecific clinical signs of the disease and due to the variety of non-standardized serological tests. Specific vaccine-induced antibodies against LB, providing an effective protection against the infection, complicate the issue further. The standard for the detection of specific antibodies against Bbsl is a two-tier test system based on an enzyme-linked immunosorbent assay (ELISA) or indirect fluorescent antibody test (IFA) for antibody screening combined with a qualitative, highly specific immunoassay (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!