A number of recent studies have shown that the nonradiative voltage losses in organic solar cells can be suppressed in systems with low energetic offsets between donor and acceptor molecular states, but the physical reasons underpinning this remain unclear. Here, we present a systematic study of 18 different donor/acceptor blends to determine the effect that energetic offset has on both radiative and nonradiative recombination of the charge-transfer (CT) state. We find that, for certain blends, low offsets result in hybridization between charge-transfer and lowest donor or acceptor exciton states, which leads to a strong suppression in the nonradiative voltage loss to values as low as 0.23 V associated with an increase in the luminescence of the CT state. Further, we extend a two-state CT-state recombination model to include the interaction between CT and first excited states, which allows us to explain the low nonradiative voltage losses as an increase in the effective CT to ground state oscillator strength due to the intensity borrowing mechanism. We show that low nonradiative voltage losses can be achieved in material combinations with a strong electronic coupling between CT and first excited states and where the lower band gap material has a high oscillator strength for transitions from the excited state to the ground state. Finally, from our model we propose that achieving very low nonradiative voltage losses may come at a cost of higher overall recombination rates, which may help to explain the generally lower FF and EQE of highly hybridized systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b01465 | DOI Listing |
J Am Chem Soc
January 2025
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
Antimony sulfide (SbS) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of SbS-based solar cells has remained stagnant over the past decade, largely due to trap-assisted nonradiative recombination. Here we assess the trap-limited conversion efficiency of SbS by investigating nonradiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics.
View Article and Find Full Text PDFNat Mater
January 2025
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Reducing nonradiative recombination is crucial for minimizing voltage losses in metal-halide perovskite solar cells and achieving high power conversion efficiencies. Photoluminescence spectroscopy on complete or partial perovskite solar cell stacks is often used to quantify and disentangle bulk and interface contributions to nonradiative losses. Accurately determining the intrinsic loss in a perovskite layer is key to analyzing the origins of nonradiative recombination and developing defect engineering strategies.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics and Materials Science, University of Luxembourg, Esch-sur-Alzette, L-4365, Luxembourg.
Cu(In, Ga)S demonstrates potential as a top cell material for tandem solar cells. However, achieving high efficiencies has been impeded by open-circuit voltage (V) deficits arising from In-rich and Ga-rich composition segregation in the absorber layer. This study presents a significant improvement in the optoelectronic quality of Cu(In, Ga)S films through the mitigation of composition segregation in three-stage co-evaporated films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!