SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures.

Biomacromolecules

Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania, Philadelphia , Pennsylvania 19104-6323 , United States.

Published: April 2019

Single-electron transfer-living radical polymerization (SET-LRP) in "programmed" aqueous organic biphasic systems eliminates the judicious choice of solvent and also provides accelerated reaction rates. Herein, we report efforts to expand the monomer scope for these systems by targeting methacrylic monomers and polymers. Various environmentally friendly aqueous alcoholic mixtures were used in combination with Cu(0) wire catalyst, tris(2-dimethylaminoethyl)amine (Me-TREN) ligand, and p-toluenesulfonyl chloride (Ts-Cl) initiator to deliver well-defined polymethacrylates from methyl methacrylate, butyl methacrylate, and other monomers derived from biomass feedstock (e.g., lactic acid, isosorbide, furfural, and lauric acid). The effect of water on the nature of the reaction mixture during the SET-LRP process, reaction rate, and control of the polymerization is discussed. The control retained under the reported conditions is demonstrated by synthesizing polymers of different targeted molar mass as well as quasi-block AB copolymers by "in situ" chain extension at high conversion. These results highlight the capabilities of SET-LRP to provide sustainable solutions based on renewable resources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.9b00257DOI Listing

Publication Analysis

Top Keywords

aqueous alcoholic
8
alcoholic mixtures
8
set-lrp
4
set-lrp bio-
4
bio- petroleum-sourced
4
petroleum-sourced methacrylates
4
methacrylates aqueous
4
mixtures single-electron
4
single-electron transfer-living
4
transfer-living radical
4

Similar Publications

The genus (Lamiaceae family) comprises approximately 300 species, which are widely used in traditional medicine for their diaphoretic, antiseptic, hemostatic, and anti-inflammatory properties, but scarcely in official ones. Therefore, the study of holds promise for developing new medicinal products. In aqueous and aqueous-alcoholic soft extracts of the herb, 16 amino acids, 20 phenolics, and 10 volatile substances were identified by HPLC and GC/MS.

View Article and Find Full Text PDF

Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from , , , and , and curcumin from were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection.

View Article and Find Full Text PDF

Members of the genus are the conventional medicinal plants used in the therapeutic management of numerous ailments, especially for their antioxidant and pharmacological activities. The crude extract of was profiled using high-resolution GC-MS and LC-MS/MS techniques to determine possible bioactive compounds that are vital to the antioxidant activity. A total of 52 and 63 bioactive compounds have been detected in GC-MS chromatograms using different solvents (methanol and ethanol) in leaf extracts, representing the presence of certain bioactive compounds.

View Article and Find Full Text PDF

Phyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents.

View Article and Find Full Text PDF

Aqueous extract of Cornus officinalis alleviate NAFLD via protecting hepatocytes proliferation through regulation of the tricarboxylic acid cycle.

J Ethnopharmacol

January 2025

International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Cornus officinalis (CO) has been widely used as Chinese herbal medicine and has a good clinical efficacy in liver disease. In particular, it has a significant therapeutic effect on metabolic liver disease. However, systematic pharmacological studies on its hepatoprotective effect on non-alcoholic fatty liver disease (NAFLD) are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!