Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DT-diaphorase (DT-D) is known to mainly catalyze the two-electron reduction of quinones and nitro(so) compounds. Detection of Gram-negative bacterial outer membrane vesicles (OMVs) that contain pyrogenic lipopolysaccharides (LPSs, also called endotoxins) is required for evaluating the toxic effects of analytical samples. Here, we report that DT-D has a high dephosphorylation activity: DT-D catalyzes reductive dephosphorylation of a phosphate-containing substrate in the presence of NADH. We also report that sensitive and simple OMV detection is possible with a sandwich-type electrochemical immunosensor using DT-D and two identical LPS-binding antibodies as a catalytic label and two sandwich probes, respectively. The absorbance change in a solution containing 4-nitrophenyl phosphate indicates that dephosphorylation occurs in the presence of both DT-D and NADH. Among the three phosphate-containing substrates [4-aminophenyl phosphate, ascorbic acid phosphate, and 1-amino-2-naphthyl phosphate (ANP)] that can be converted into electrochemically active products after dephosphorylation, ANP shows the highest electrochemical signal-to-background ratio, because (i) the dephosphorylation of ANP by DT-D is fast, (ii) the electrochemical oxidation of the dephosphorylated product (1-amino-2-naphthol, AN) is rapid, even at a bare indium-tin oxide electrode, and (iii) two redox cycling processes significantly increase the electrochemical signal. The two redox cycling processes include an electrochemical-enzymatic redox cycling and an electrochemical-chemical redox cycling. The electrochemical signal in a neutral buffer (tris buffer, pH 7.5) is comparable to that in a basic buffer (tris buffer, pH 9.5). When the immunosensor is applied to the detection of OMV from Escherichia coli, the detection limit is found to be 8 ng/mL. This detection strategy is highly promising for the detection of biomaterials, including other extracellular vesicles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b00064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!