Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis.

Oxid Med Cell Longev

Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Published: May 2019

Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381575PMC
http://dx.doi.org/10.1155/2019/4278658DOI Listing

Publication Analysis

Top Keywords

epigenetic changes
16
reactive oxygen
8
oxygen species
8
radiation-induced fibrosis
8
radiation exposure
8
rif
5
species drive
4
epigenetic
4
drive epigenetic
4
changes
4

Similar Publications

Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the common malignant tumors. Complement system has become a new focus of cancer research by changing the biological behavior of cancer cells to influence the growth of cancer. Recent studies reported the complement C5a-C5aR1 axis can promote the malignant phenotype of multiple tumors through various signaling pathways.

View Article and Find Full Text PDF

Background: Lewy body diseases, including dementia with Lewy bodies (DLB), are characterized by α-synuclein accumulation, leading to dementia. Previous studies suggest distinct epigenetic and metabolomic profiles in DLB.

Objective: This study aims to identify diagnostic biomarkers by analyzing the methylome and metabolome in the Brodmann area 7 of postmortem brain tissues from DLB patients and control subjects using multiomics approaches.

View Article and Find Full Text PDF

Background And Objectives: Aging clocks are computational models designed to measure biological age and aging rate based on age-related markers including epigenetic, proteomic, and immunomic changes, gut and skin microbiota, among others. In this narrative review, we aim to discuss the currently available aging clocks, ranging from epigenetic aging clocks to visual skin aging clocks.

Methods: We performed a literature search on PubMed/MEDLINE databases with keywords including: "aging clock," "aging," "biological age," "chronological age," "epigenetic," "proteomic," "microbiome," "telomere," "metabolic," "inflammation," "glycomic," "lifestyle," "nutrition," "diet," "exercise," "psychosocial," and "technology.

View Article and Find Full Text PDF

Background/objectives: Schizophrenia is a complex mental disorder influenced by genetic and environmental factors, including dietary habits. Oxidative stress and inflammation play a crucial role in the pathophysiology of schizophrenia. Emerging research suggests that diet may affect schizophrenia through different biological mechanisms beyond oxidative stress and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!