Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Mouse.

Front Cell Neurosci

Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.

Published: March 2019

Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405628PMC
http://dx.doi.org/10.3389/fncel.2019.00067DOI Listing

Publication Analysis

Top Keywords

cochlear nuclei
12
igf-1 deficiency
8
glutamate
6
neuroglial involvement
4
involvement abnormal
4
abnormal glutamate
4
glutamate transport
4
cochlear
4
transport cochlear
4
nuclei mouse
4

Similar Publications

Improving Real-Time Feedback During Cochlear Implantation: The Auditory Nerve Neurophonic/Cochlear Microphonic Ratio.

Ear Hear

January 2025

Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.

Objectives: Real-time monitoring of cochlear function to predict the loss of residual hearing after cochlear implantation is now possible. Current approaches monitor the cochlear microphonic (CM) during implantation from the electrode at the tip of the implant. A drop in CM response of >30% is associated with poorer hearing outcomes.

View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

Aims And Objectives: This study aimed to investigate the presence, type, and severity of hearing losses in individuals with Duane Retraction Syndrome (DRS), and to ascertain if there are anomalies in the auditory pathways at the brainstem level in DRS, believed to arise from aberrant interaction between cranial nerves and brainstem nuclei.

Study Design: Cross-sectional observational study.

Setting: Tertiary referral centre.

View Article and Find Full Text PDF

Unlabelled: Central auditory disorders (CSD) - this is a violation of the processing of sound stimuli, including speech, above the cochlear nuclei of the brain stem, which is mainly manifested by difficulties in speech recognition, especially in noisy environments. Children with this pathology are more likely to have behavioral problems, impaired auditory, linguistic and cognitive development, and especially difficulties with learning at school.

Objective: To analyze the literature data on the epidemiology of central auditory disorders in school-age children.

View Article and Find Full Text PDF

Cochlear implant in Wolfram syndrome: A case report.

Cochlear Implants Int

December 2024

Department of ENT and Head & Neck Surgery, Seth GS Medical College & K.E.M. Hospital, Mumbai, India.

Introduction: Wolfram syndrome, a rare autosomal recessive disorder, is characterised by diabetes insipidus, juvenile diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD).

Case Report: We present a case of a 21-year-old male diagnosed with Wolfram syndrome who underwent cochlear implantation due to progressive hearing loss. The patient first complained of bilateral hearing loss at the age of 8 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!