Feasibility study of a double resonant 8-channel H/ 8-channel Na receive-only head coil at 3 Tesla.

Magn Reson Imaging

Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Published: June 2019

Sodium (Na) magnetic resonance imaging (MRI), especially brain applications are increasingly interesting since sodium MRI can provide additional information about tissue viability and vitality. In order to include sodium MRI in the clinical routine, a single RF setup is preferable which provides high sodium sensitivity and full proton performance in terms of signal-to-noise ratio (SNR) and parallel imaging performance. The aim of this work was to evaluate the feasibility of a double resonant receive (Rx) coil array for proton and sodium head MRI. The coil was designed to provide high sodium SNR and full proton performance comparable to commercial coils which are optimized for sodium MRI or for proton MRI, respectively. A measurement setup was built which comprised an 8-channel Rx degenerate Birdcage for sodium imaging and an 8-channel Rx array for proton imaging. The performance of the coil was evaluated against commercial sodium and proton coils using phantom and in-vivo measurements of two healthy volunteers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2019.03.013DOI Listing

Publication Analysis

Top Keywords

sodium mri
12
sodium
9
double resonant
8
high sodium
8
full proton
8
proton performance
8
imaging performance
8
array proton
8
mri
6
proton
6

Similar Publications

This study aims to improve our understanding of acute ischemic stroke clot imaging by integrating CT attenuation information with MRI susceptibility signal of thrombi. For this proof-of-principle experimental study, fifty-seven clot analogs were produced using ovine venous blood with a broad histological spectrum. Each clot analog was analyzed to determine its RBC content and chemical composition, including water, Fe III, sodium, pH, and pO2.

View Article and Find Full Text PDF

Double-quantum filtered Na NMR and MRI: Selective detection of ordered sodium in an inhomogeneous B field.

J Magn Reson

November 2024

Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

Double-quantum filtered Na NMR experiments with one or two "magic angle" (54.7°) pulses in the filter step are widely used for selective observation of sodium ions that are interacting with ordered biological structures ("ordered sodium") and hence exhibit a distribution of quadrupolar splittings in their NMR spectrum. This approach has recently been extended to Na MRI where the conventional experiment has been modified, omitting the 180° pulse to reduce the absorption of radiofrequency energy during human studies.

View Article and Find Full Text PDF

Patients with rheumatoid arthritis (RA) have increased hypertension. Tissue sodium may contribute to development and progression of hypertension through immune cell activation. This study aimed to determine if skin sodium content is: 1) higher in RA versus control participants, and 2) associated with blood pressure and disease activity.

View Article and Find Full Text PDF

Background: A 63-year-old Black woman presented with progressive exertional dyspnea and chronic lower back pain. The course and findings in her case are instructive.

Case Report: Family history was notable for cardiac deaths.

View Article and Find Full Text PDF

Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology.

Neurol Int

December 2024

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.

Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!