Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether.

Int J Biol Macromol

Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden. Electronic address:

Published: June 2019

Hyaluronic acid (HA) cross-linked with 1,4-butanediol diglycidyl ether (BDDE) are hydrogels with many biomedical applications. Degree of substitution, cross-linking and substitution position of the cross-linker might influence the properties of the hydrogels. We showed earlier that the most common substitution position of the cross-linker on the hyaluronan chain was the 4-hydroxyl of N-acetylglucosamine. This result has led us to investigate unsulfated chondroitin (CN) which only differ from HA in the primary structure by the configuration at C4 of the aminoglycan. In the present study, we have investigated (i) the substitution positions of the cross-linker in CN using NMR and LC-MS and compared the results to the data obtained for HA (ii) the effect of alkali on the C and H chemical shifts in CN and HA (iii) the temperature coefficients and chemical shifts of hydroxyl protons in CN and HA. In CN, the 2-hydroxyl of glucuronic acid and 6-hydroxyl of N-acetylgalactosamine were found to be the major sites of substitution by BDDE. Moreover, while chondroitinase was not able to cleave HA tetrasaccharide substituted at the 4-hydroxyl GlcNAc reducing end by BDDE, it is able to degrade CN-BDDE down to disaccharide units.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.03.020DOI Listing

Publication Analysis

Top Keywords

14-butanediol diglycidyl
8
diglycidyl ether
8
substitution position
8
position cross-linker
8
chemical shifts
8
substitution
5
insights reactivity
4
reactivity chondroitin
4
chondroitin hyaluronan
4
hyaluronan 14-butanediol
4

Similar Publications

A lubcan cross-linked polyethylene glycol dimethyl ether hydrogel for hyaluronic acid replacement as soft tissue engineering fillers.

Int J Biol Macromol

January 2025

Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China. Electronic address:

The structure of soft tissues is often destroyed by injury and aging. Injectable fillers eliminate the need for surgery and enhance repair. Hyaluronic acid-based hydrogels are commonly employed for their effectiveness and biocompatibility.

View Article and Find Full Text PDF

The binding ability of human serum albumin (HSA) on active pharmaceutical ingredients (APIs) is one of the most important parameters in the early stages of drug discovery. In this study, an immobilized HSA-based tool was developed for the rapid and easy in vitro screening of API binding. The work explored the serious incompleteness in the identification of HSA used for in vitro screening published in the last five years.

View Article and Find Full Text PDF

The pursuit of carbon circularity in the fabrication of new materials has driven the increased use of recycled and biobased resources, a practice that has become more prevalent in recent years. In epoxy resin systems, alternatives to the use of fossil-based bisphenols have been proposed such as via the production of recycled bisphenol A (r-BPA) or by substitution with lignin derivatives, both of which are recovered from previous processes, promoting circularity. For this study, r-BPA was obtained via the chemical recycling of plastic blends from end-of-life (eol) televisions (TV).

View Article and Find Full Text PDF

Differences in Rejuvenation Mechanisms and Physical Properties of Aged Styrene-Butadiene-Styrene (SBS)-Modified Bitumen by Mono-Epoxy and Di-Epoxy Compounds.

Polymers (Basel)

December 2024

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.

Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.

View Article and Find Full Text PDF

Real-time quantification of microfluidic hydrogel crosslinking via gas-phase electrophoresis.

J Colloid Interface Sci

January 2025

Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. 300044 Hsinchu City, Taiwan, ROC. Electronic address:

This study presents a novel approach for the controlled synthesis and real-time characterization of crosslinked hyaluronic acid (HA) hydrogels utilizing a microfluidic platform coupled with hyphenated electrospray-differential mobility analysis (ES-DMA). By precisely controlling key synthesis parameters within the microfluidic environment, including pH, temperature, reaction time, and the molar ratio of HA to crosslinker (1,4-butanediol diglycidyl ether, BDDE), we successfully synthesized HA hydrogels with tailored size and properties. The integrated ES-DMA system provides rapid, in-line analysis of hydrogel particle size and distribution, enabling real-time monitoring and optimization of the synthesis process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!