Background: Enteric serotonin influences intestinal homeostasis and functions as a mucosal growth factor. Previously, we demonstrated increased mucosal surface area and enhanced crypt cell proliferation in serotonin reuptake transporter (SERT)-deficient mice. Therefore, we hypothesized that serotonin-mediated mucosal growth would also result in enhanced carbohydrate and lipid absorption.
Material And Methods: Wild-type C57Bl/6 (WT) and SERT-knockout (SERTKO) mice were fasted then gavaged with D-xylose or boron-dipyrromethene (BODIPY) FL-C12 medium-chain fatty acid analog. Serum D-xylose and BODIPY concentrations were serially measured from blood drawn at 30 to 360 min post-gavage. Small intestine was harvested from both groups for comparison of morphometric parameters. Area under the curve of plotted graphs was calculated, and means were compared with Student's t-test to a significance of p < 0.05.
Results: Villus height and crypt depth were significantly greater in the middle and distal small intestine of SERTKO animals compared to WT. Overall absorption of D-xylose and BODIPY was greater in SERTKO animals compared to WT animals. Absorption of D-xylose was persistently elevated in SERTKO animals, while there was an initial delay in BODIPY absorption followed by a sustained and significantly greater absorption in SERTKO animals at 60-360 min after gavage.
Conclusion: Potentiation of serotonin signaling in SERTKO mice results in small intestinal mucosal growth and enhanced carbohydrate and fat absorption in vivo. These functional increases support the concept of targeting the serotonin signaling system to augment intestinal adaptation in the setting of intestinal failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpedsurg.2019.02.027 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey.
Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!