β-glucans are polysaccharides comprising β-D-glucoses with various bioactivities. Herein, we extracted three β-glucans from Lentinus edodes with different sources and assessed their antitumor activities on a mice model with intragastric, intraperitoneal and intratumoral injection. Three polysaccharides were shown to have the same chemical structure of β-(1,3)-glucan with β-(1,6) branches, and exhibited S-180 tumor-suppressing ability with good safety. It was found that β-glucans up-regulated CD4 T cell level in lymphoid organs decreased by tumor-burden, indicating promotion of immunomodulation. β-glucans targeted tumors in vivo even after oral or intraperitoneal injection. Furthermore, β-glucans not only targeted to lymphoid organs and increased CD4 T cells number, but also enhanced CD4 T cells and neutrophils populations in tumors. It was proposed that β-glucans promoted CD4 T cell immunomodulation and neutrophils infiltration into tumors, leading to tumor growth inhibition. These findings reveal that β-glucans can be used as an effective agent for cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2019.03.006 | DOI Listing |
PLoS One
January 2025
Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Purpose: To explore the effects of recombinant human growth hormone (r-hGH) on inflammatory mediators, immune cells and prognosis in severe neurosurgical patients.
Methods: From August 2020 to June 2021, a total of 236 patients who admitted to the neurosurgical intensive care unit (NSICU) were retrospectively analyzed. The patients were divided into GH group (97 cases) and nGH group (139 cases) according to whether they received r-hGH treatment.
PLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
This study aimed to evaluate the causal effects of different immune cells on heart failure (HF) using Mendelian randomization (MR). Datasets for immune cell phenotypes and HF were obtained from European Bioinformatics Institute and FinnGen. Then, single nucleotide polymorphisms were screened according to the basic assumptions of MR.
View Article and Find Full Text PDFChaos
January 2025
Department of Mathematics, Indian Institute of Technology Patna, Patna 801103, India.
Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!