Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6451697 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2019.02.001 | DOI Listing |
Biochem Biophys Res Commun
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:
Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. Electronic address:
ARID1A deletion mutation contributes to improved treatment of several malignancies with immune checkpoint inhibitors (ICIs). However, its role in modulating of tumor immune microenvironment (TIME) of gastric cancer (GC) remains unclear. Here, we report an increase of CD8 T cells infiltration in GC patients with ARID1A-mutation (MUT), which enhances sensitivity to ICIs.
View Article and Find Full Text PDFProstate
February 2025
Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
Clin Transl Med
February 2024
Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
Background: Mutations in one or more genes responsible for encoding subunits within the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodelling complexes are found in approximately 25% of cancer patients. Bromodomain containing 9 (BRD9) is a more recently identified protein coding gene, which can encode SWI/SNF chromatin-remodelling complexes subunits. Although initial evaluations of the potential of BRD9-based targeted therapy have been explored in the clinical application of a small number of cancer types, more detailed study of the diagnostic and prognostic potential, as well as the detailed biological mechanism of BRD9 remains unreported.
View Article and Find Full Text PDFEur J Hum Genet
October 2024
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!