Nanotechnology is a developing branch of pharmaceutical sciences wherein the particles extend in nanosizes and turn out to be more responsive when contrasted with their unique counter parts. In the past numerous years, the utilization of synthetic concoctions and physical strategies were in mould; however, the acknowledgment of their toxic impacts on human well-being and condition influenced serious world view for the researchers. Presently, green synthesis is the watch word for the combination of nanoparticles (NPs) by plants or their metabolites. This innovation is particularly compensating as far as decreasing the poisonous quality caused by the conventionally integrated NPs. In this review, we cover the perspectives by which metal particles can be integrated from green methods in the perspective of green methods utilized in the NPs combination. In the green strategies, plant metabolites and natural substances are utilized to orchestrate the NPs for the pharmaceutical and other applications. Some characterization methods are also reviewed along with applications of NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2019.1577878 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The University of Manchester, School of Chemistry & Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Amide bond formation is fundamental in nature and is widely used in the synthesis of pharmaceuticals and other valuable products. Current methods for amide synthesis are often step and atom inefficient, requiring the use of protecting groups, deleterious reagents and organic solvents that create significant waste. The development of cleaner and more efficient catalytic methods for amide synthesis remains an urgent unmet need.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
In the original publication [...
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!