As evidence for the devastating impacts of air pollution on human health continues to increase, improving urban air quality has become one of the most pressing tasks facing policy makers world-wide. Increasingly, and very often on the basis of conflicting and/or weak evidence, the introduction of green infrastructure (GI) is seen as a win-win solution to urban air pollution, reducing ground-level concentrations without imposing restrictions on traffic and other polluting activities. The impact of GI on air quality is highly context dependent, with models suggesting that GI can improve urban air quality in some situations, but be ineffective or even detrimental in others. Here we set out a novel conceptual framework explaining how and where GI can improve air quality, and offer six specific policy interventions, underpinned by research, that will always allow GI to improve air quality. We call GI with unambiguous benefits for air quality GI4AQ. However, GI4AQ will always be a third-order option for mitigating air pollution, after reducing emissions and extending the distance between sources and receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889104 | PMC |
http://dx.doi.org/10.1007/s13280-019-01164-3 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
National Institute of Chemistry Slovenia: Kemijski institut, Inorganic Chemistry and Technology, Hajdrihova 19, 1000, Ljubljana, SLOVENIA.
Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.
View Article and Find Full Text PDFFront Public Health
January 2025
Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
The burden of disease and death attributable to environmental pollution is a growing public health challenge worldwide, particularly in developing countries. While the adverse effects of environmental pollution on oral health have garnered increasing attention, a comprehensive and systematic assessment remains lacking. This article delves into the intricate relationship between environmental pollution and oral health, highlighting significant impacts on various aspects such as dental caries, periodontal diseases, oral facial clefts, cancer, as well as other oral diseases.
View Article and Find Full Text PDFFront Chem
January 2025
Jiangxi Copper Technology Institute Co., Ltd, Nanchang, Jiangxi, China.
Introduction: Whether in industrial production or daily life, froth plays an important role in many processes. Sometimes, froth exists as a necessity and is also regarded as the typical characteristic of products, e.g.
View Article and Find Full Text PDFInt J Public Health
January 2025
Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.
Front Nutr
January 2025
ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India.
This study aimed to determine the effects of elevated carbon dioxide (eCO) and temperature (eT) on the phytochemical and nutritional parameters of legumes. Field experiments were conducted using black gram ( L.), green gram ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!