Although new cancer therapeutics are discovered at a rapid pace, lack of effective means of delivery and cancer chemoresistance thwart many of the promising therapeutics. We demonstrate a method that confronts both of these issues with the light-activated delivery of a Bcl-2 functional converting peptide, NuBCP-9, using hollow gold nanoshells. This approach has shown not only to increase the efficacy of the peptide 30-fold in vitro but also has shown to reduce paclitaxel resistant H460 lung xenograft tumor growth by 56.4%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918063PMC
http://dx.doi.org/10.1007/s10495-019-01531-1DOI Listing

Publication Analysis

Top Keywords

hollow gold
8
delivery cancer
8
improved vivo
4
vivo targeting
4
targeting bcl-2
4
bcl-2 phenotypic
4
phenotypic conversion
4
conversion hollow
4
gold nanoshell
4
nanoshell delivery
4

Similar Publications

Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a colorimetric method to detect arsenic (As(V)) in rice, enhancing food safety and pollution control.
  • The method uses immobilized acid phosphatase in a specialized hybrid framework that improves detection efficiency and reliability.
  • The resulting biosensor has a wide detection range, low limits of detection, and is successfully tested on various rice samples, showcasing its practical application.
View Article and Find Full Text PDF

Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems.

ACS Appl Mater Interfaces

January 2025

School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.

View Article and Find Full Text PDF

Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.

View Article and Find Full Text PDF

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates as oxidase mimetics for ratiometric colorimetric detection of nitrite.

Mikrochim Acta

December 2024

College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!