Environmental processes of nanoplastics in heterogeneous natural groundwater systems remain unclear. In this study, the control of particle size and surface functional groups on the fate and transport of nanoplastics in an organic matter (OM) rich aquifer was explored using batch and column tests. The carboxyl-modified 200 nm (200CNP), carboxyl-modified 50 nm (50CNP), and amino-modified 50 nm (50ANP) polystyrene latex beads were used as surrogates for nanoplastics of contrasting sizes and surface functional groups. Aquifer sand and natural groundwater sampled from an agriculture-impacted shallow sandy aquifer were processed to obtain granule beds with/out surface minerals and groundwater containing different-sized fractions of OM. Results show that particle size controlled the hetero-aggregation rate of nanoplastics with OM and Ca: a larger size resulting in a lower reaction rate led to a higher stability of 200CNP than 50CNP and 50ANP. Meanwhile, surface functional groups appeared to affect the affinity of OM and Ca to nanoplastics, i.e. the amino group allowed the adsorption of dissolved OM on the particle but inhibited the adsorption of Ca and suspended OM, while the carboxyl group allowed adsorption of the all. The resulting variable OM coatings formed on the different nanoplastics played a critical role in determining the particle stability and mobility, i.e. the suspended OM increased both the particle stability and mobility while the dissolved OM reduced both. These findings suggest that: 1. Depending on the OM properties, the influence of particle size and surface group on the nanoplastic processes might be secondary to the OM impact; 2. In evaluating the OM impact, not only the OM concentration but also the size and surface physiochemistry of the OM should be characterized. The insight gained is important to predict the concentration evolution pattern of weathered nanoplastics in OM-impacted sandy aquifers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.03.102DOI Listing

Publication Analysis

Top Keywords

particle size
16
size surface
16
surface functional
12
functional groups
12
fate transport
8
nanoplastics
8
transport nanoplastics
8
natural groundwater
8
group allowed
8
allowed adsorption
8

Similar Publications

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

One of the primary challenges faced by small rubbing filament machines is the significant variability in material sizes, particularly in the feeding direction. This variability complicates the processing of locally baled straw with a single device. To address this issue, an adjustable feeding and bale-breaking device was developed and tested to enhance the filamentous performance of baled straw.

View Article and Find Full Text PDF

Plastics are globally considered a significant threat, particularly to metropolitan areas, due to the extensive use of plastic products. This research is the first of its kind to document microplastics contamination and its effects on Red wettled lapwing (Vanellus indicus). The concentration of microplastics (MPs) was measured from surface water at different locations including canals and drains, which are the primary sources of MPs pollution in the metropolitan city Lahore, Pakistan.

View Article and Find Full Text PDF

Achieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.

View Article and Find Full Text PDF

Hydrogen production by suspension self-rotation enhanced pyrolysis of sludge particles in cyclone.

Water Res

January 2025

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China. Electronic address:

The challenges faced by sludge pyrolysis units, including poor heat transfer efficiency and uneven heating of material groups, significantly hinder the green and low-carbon transformation and sustainable development of sludge treatment. The suspension self-rotation of sludge particles in a cyclone enhances particle heat transfer, thereby improving the pyrolysis process. In this study, we developed a novel method for sludge pyrolysis using Cyclone Suspension Self-Rotation Pyrolysis Reactor (CSSPR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!