Stressors associated with climate change and contaminants, resulting from the activities of humans, are affecting organisms and ecosystems globally. Previous studies suggest that the unique characteristics of polar biota, such as slower metabolisms and growth, and the generally stable conditions in their natural environment, cause higher susceptibility to contamination and climate change than those in temperate and tropical areas. We investigated the effects of increased temperature and decreased salinity on copper toxicity in four subantarctic marine invertebrates using realistic projected conditions under a future climatic change scenario for this region. We hypothesised that these relatively subtle shifts in environmental stressors would impact the sensitivity of cold-adapted species to copper. The four test species were: a copepod Harpacticus sp.; isopod Limnoria stephenseni; flatworm Obrimoposthia ohlini; and bivalve Gaimardia trapesina. These species occupy a range of ecological niches, spanning intertidal and subtidal nearshore zones. We predicted that species would differ in their tolerance to stressors, depending on where they occurred within this ecological gradient. Organisms were exposed to the multiple stressors in a factorial design in laboratory based toxicity tests. Sensitivity estimates for copper (LC50) were calculated using a novel statistical approach which directly assessed the impacts of the multiple stressors. In three of the four species tested, sensitivity to copper was amplified by small increases in temperature (2-4 °C). The effects of salinity were more variable but a decrease of as little as 2 ppt caused a significant effect in one species. This study provides some of the first evidence that high latitude species may be at increased risk from contaminants under projected future climate conditions. This interaction, between contaminants and the abiotic environment, highlights a potential pathway to biodiversity loss under a changing climate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.02.016DOI Listing

Publication Analysis

Top Keywords

subantarctic marine
8
marine invertebrates
8
changing climate
8
effects salinity
8
climate change
8
multiple stressors
8
species
7
copper
5
climate
5
stressors
5

Similar Publications

Climatic forcing of the Southern Ocean deep-sea ecosystem.

Curr Biol

December 2024

Marine Core Research Institute (MaCRI), Kochi University, 200 Monobe-otsu, Nankoku, Kochi 783-8502, Japan.

The deep-time development of the Southern Ocean's deep-sea ecosystem remains poorly understood, despite being a key region in global ecological, climatological, and oceanographic systems, where deep water forms and biodiversity is unexpectedly high. Here, we present an ∼500,000-year fossil record of the deep-sea Southern Ocean ecosystem in the subantarctic zone. The results indicate that changes in surface productivity and the resulting food supply to the deep sea, driven by eolian dust input and iron fertilization, along with changes in bottom-water temperature influenced by deep-water circulation, have controlled the deep-sea ecosystem in the Southern Ocean on orbital (10-10 years) timescales following the Mid-Brunhes event (MBE), a major climatic transition ∼430,000 years ago.

View Article and Find Full Text PDF

The metabolism of phytoplankton cells is synchronized with the diel light cycle. Likewise, associated heterotrophic bacteria adjust their diel expression of transporter- and catabolism-related genes to target the dissolved organic matter released by the phytoplankton cell. Dissolved combined carbohydrates (DCCHO) and dissolved amino acids (DAA) are major phytoplankton products and bacterial substrates.

View Article and Find Full Text PDF

Circumpolar and Regional Seascape Drivers of Genomic Variation in a Southern Ocean Octopus.

Mol Ecol

January 2025

Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.

Understanding how ecological, environmental and geographic features influence population genetic patterns provides crucial insights into a species' evolutionary history, as well as their vulnerability or resilience under climate change. In the Southern Ocean, population genetic variation is influenced across multiple spatial scales ranging from circum-Antarctic, which encompasses the entire continent, to regional, with varying levels of geographic separation. However, comprehensive analyses testing the relative importance of different environmental and geographic variables on genomic variation across these scales are generally lacking in the Southern Ocean.

View Article and Find Full Text PDF

Climate change is projected to substantially alter the Southern Ocean's physical and chemical properties, thereby impacting its marine ecosystems and species, particularly those in Antarctic and sub-Antarctic regions. This study focuses on Neobuccinum eatoni, a polar marine 'true whelk' endemic to these regions, utilizing 166 spatially independent occurrence data records to model potential distribution shifts under future climate scenarios. Employing Species Distribution Models (SDMs) on spatially cross-validated occurrences, we achieved high predictive accuracy, identifying "sea water salinity range" at mean bottom depth as the most significant predictor of habitat preferences.

View Article and Find Full Text PDF

Polar ecosystems are considered very fragile, however, due to the short observation record it is hard to assess the recovery processes of the coastal and fjord environments after a major disturbance. Here, we provide a unique case study from South Georgia (sub-Antarctic), an area seriously affected by the whaling industry. The study focuses on King Edward Cove, serving as a sheltered harbor for the former whaling station at Grytviken, as well as other parts of Cumberland Bay considered to represent generally pristine areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!