Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant plasma membrane pattern recognition receptors are key to microbe sensing and activation of immunity to microbial invasion. Plants employ several types of such receptors that differ mainly in the structure of their ectodomains and the presence or absence of a cytoplasmic protein kinase domain. Plant immune receptors do not function as single entities, but form larger complexes which undergo compositional changes in a ligand-dependent manner. Here, we highlight current knowledge of molecular mechanisms underlying receptor complex dynamics and regulation, and cover early signaling networks implicated in the activation of generic plant immune responses. We further discuss how an increasingly comprehensive set of immune receptors may be employed to engineer crop plants with enhanced, durable resistance to microbial infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2019.02.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!