An untargeted metabolomic strategy based on liquid chromatography-mass spectrometry to study high glucose-induced changes in HK-2 cells.

J Chromatogr A

Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain. Electronic address:

Published: July 2019

Diabetes mellitus is a major health concern nowadays. It is estimated that 40% of diabetics are affected by diabetic nephropathy, one of the complications derived from high glucose blood levels which can lead to chronic loss of kidney function. It is now clear that the renal proximal tubule plays a critical role in the progression of diabetic nephropathy but research focused on studying the molecular mechanisms involved is still needed. The aim of this work was to develop a liquid chromatography-mass spectrometry platform to carry out, for the first time, the untargeted metabolomic analysis of high glucose-induced changes in cultured human proximal tubular HK-2 cells. In order to find the metabolites which were affected by high glucose and to expand the metabolite coverage, intra- and extracellular fluid from HK-2 cells exposed to high glucose (25 mM), normal glucose (5.5 mM) or osmotic control (5.5 mM glucose +19.5 mM mannitol) were analyzed by two complementary chromatographic modes: hydrophilic interaction and reversed-phase liquid chromatography. Non-supervised principal components analysis showed a good separation among the three groups of samples. Statistically significant variables were chosen for further metabolite identification. Different metabolic pathways were affected mainly those derived from amino acidic, polyol, and nitrogenous bases metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.03.009DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
12
high glucose
12
untargeted metabolomic
8
liquid chromatography-mass
8
chromatography-mass spectrometry
8
high glucose-induced
8
glucose-induced changes
8
diabetic nephropathy
8
high
5
glucose
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!