AI Article Synopsis

Article Abstract

Progesterone receptor membrane component 1 (PGRMC1) interacts with PGRMC2, and disrupting this interaction in spontaneously immortalized granulosa cells (SIGCS) leads to an inappropriate entry into the cell cycle, mitotic arrest, and ultimately cell death. The present study revealed that PGRMC1 and PGRMC2 localize to the cytoplasm of murine granulosa cells of nonatretric follicles with their staining intensity being somewhat diminished in granulosa cells of atretic follicles. Compared to controls (Pgrmc1fl/fl), the rate at which granulosa cells entered the cell cycle increased in nonatretic and atretic follicles of mice in which Pgrmc1 was conditionally deleted (Pgrmc1d/d) from granulosa cells. This increased rate of entry into the cell cycle was associated with a ≥ 2-fold increase in follicular atresia and the nuclear localization of nuclear factor-kappa-B transcription factor P65; (NFΚB/p65, or RELA). GTPase activating protein binding protein 2 (G3BP2) binds NFΚB/p65 through an interaction with NFΚB inhibitor alpha (IκBα), thereby maintaining NFΚB/p65's cytoplasmic localization and restricting its transcriptional activity. Since PGRMC1 and PGRMC2 bind G3BP2, studies were designed to assess the functional relationship between PGRMC1, PGRMC2, and NFΚB/p65 in SIGCs. In these studies, disrupting the interaction between PGRMC1 and PGRMC2 increased the nuclear localization of NFΚB/p65, and depleting PGRMC1, PGRMC2, or G3BP2 increased NFΚB transcriptional activity and the progression into the cell cycle. Taken together, these studies suggest that PGRMC1 and 2 regulate granulosa cell cycle entry in follicles by precisely controlling the localization and thereby the transcriptional activity of NFΚB/p65.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561858PMC
http://dx.doi.org/10.1093/biolre/ioz043DOI Listing

Publication Analysis

Top Keywords

granulosa cells
20
cell cycle
20
pgrmc1 pgrmc2
20
transcriptional activity
12
progesterone receptor
8
receptor membrane
8
membrane component
8
regulate granulosa
8
granulosa cell
8
pgrmc1
8

Similar Publications

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

High concentrations of prolactin (PRL)-induced ovine ovarian granulosa cell (GCs) apoptosis and could aggravate the induced effect. However, the molecular mechanisms that -induced GC apoptosis and repressed steroid hormone secretion remain unclear. In this study, GCs in the P group (GCs with high PRL concentration: 500 ng/mL PRL) and P-10 group (GCs with 500 ng/mL PRL infected by lentiviruses carrying overexpressed sequences of ) were collected for whole-transcriptome analysis.

View Article and Find Full Text PDF

Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Molecular Mechanism of PLIN1 in Goose Hierarchical and Pre-Hierarchical Follicle Granulosa Cells.

Animals (Basel)

January 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.

, a member of the PAT family, is expressed in both adipocytes and steroidogenic cells. In this study, we used cell transfection technology combined with transcriptome sequencing to investigate the regulatory mechanism of in goose follicular GCs. Gene Ontology (GO) analysis revealed that in the four groups (phGC: over_vs_over-NC; hGC: over_vs_over-NC; phGC: si_vs_si-NC; hGC: si_vs_si-NC), most differentially expressed genes (DEGs) were significantly enriched ( < 0.

View Article and Find Full Text PDF

is a protogynous hermaphroditic fish that changes from female to male, but the underlying sex change mechanism remains as-yet unknown. In this study, we firstly cloned and characterized the sequence and protein structure of of We found that the genomic structure of was different from other species. Expression was detected in the developing gonad by applying qRT-PCR and in situ hybridization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!