Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seasonality is a key environmental factor that regularly promotes life history adaptation. Insects invading cold-temperate climates need to overwinter in a dormant state. We compared the role of temperature and photoperiod in dormancy induction in the laboratory, as well as winter survival and reproduction in the field and the laboratory, of 5 widespread European dung fly species (Diptera: Sepsidae) to investigate their extent of ecological differentiation and thermal adaptation. Unexpectedly, cold temperature is the primary environmental factor inducing winter dormancy, with short photoperiod playing an additional role mainly in species common at high altitudes and latitudes (Sepsis cynipsea, neocynipsea, fulgens), but not in those species also thriving in southern Europe (thoracica, punctum). All species hibernate as adults rather than juveniles. S. thoracica had very low adult winter survivorship under both (benign) laboratory and (harsh) field conditions, suggesting flexible quiescence rather than genetically fixed winter diapause, restricting their distribution towards the pole. All other species appear well suited for surviving cold, Nordic winters. Females born early in the season reproduce before winter while late-born females reproduce after winter, fulgens transitioning earliest before winter and thoracica and punctum latest; a bet-hedging strategy of reproduction during both seasons occurs rarely but is possible physiologically. Fertility patterns indicate that females can store sperm over winter. Winter dormancy induction mechanisms of European sepsids are congruent with their geographic distribution, co-defining their thermal niches. Flexible adult winter quiescence appears the easiest route for insects spreading towards the poles to evolve the necessary overwinter survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-019-04378-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!