The present work is dedicated to the experimental analysis on the influence of fuel-borne additives on ternary fuel blend operated in a single cylinder DI diesel engine. Alumina (AlO) nanoparticles were chosen as fuel additives at dosing levels of 10, 20, and 30 ppm, respectively, and the ternary fuel (TF) is prepared by blending 70% diesel, 20% Jatropha biodiesel, and 10% ethanol. Performance characteristics like brake thermal efficiency (BTE) and brake-specific energy consumption (BSEC) and emission characteristics like HC, CO, NOx, and smoke along with combustion characteristics like cylinder pressure, HRR (heat release rate), and CHRR (cumulative heat release rate) were considered for analysis. Based on experimentation, it is observed that TF blended with 20 ppm alumina nanoadditive (TF20) resulted in higher BTE and lowered BSEC by 7.8 and 4.93% and lowered HC, CO, NOx, and smoke emissions by 5.69, 11.24, 9.39, and 6.48% in comparison with TF. Moreover, TF20 resulted in higher cylinder pressure, HRR, and CHRR of about 72.67 bar, 76.22 J/°CA, and 1171.1 J, respectively, which are higher than those of diesel and TF. Hence, it is concluded that the addition of 20 ppm alumina nanoadditive in TF can enhance the engine performance and combustion as well as lower the exhaust pollutants simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-04739-5 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey, 08854, USA.
Developing highly efficient, cost-effective, and robust electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is paramount for the large-scale commercialization of renewable fuel cells and rechargeable metal-air batteries. Herein, a new ternary-atom catalyst that is composed of paired Fe sites and single Ni sites (as Fe-N and Ni-N) coordinated onto hollow nitrogen-doped carbon microspheres is developed. The as-synthesized catalyst exhibits remarkable activities toward both the ORR and OER in alkaline media, with superior performances to those of the control materials that contain only Fe-N or Ni-N sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
As one of the best candidates for hydrogen oxidation reaction (HOR), ruthenium (Ru) has attracted significant attention for anion exchange membrane fuel cells (AEMFCs), although it suffers from sluggish kinetics under alkaline conditions due to its strong hydroxide affinity. In this work, we develop ternary hollow nanocages with Pt epitaxy on RuCu (Pt-RuCu NCs) as efficient HOR catalysts for application in AEMFCs. Experimental characterizations and theoretical calculations confirm that the synergy in optimized Pt-RuCu NCs significantly modifies the electronic structure and coordination environment of Ru, thereby balancing the binding strengths of H* and OH* species, which leads to a markedly enhanced HOR performance.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China. Electronic address:
Hydrogen peroxide (HO) is a promising solar fuel and its photocatalytic production has been regarded as a green and sustainable alternative to the conventional anthraquinone method. Ternary metal sulfide photocatalysts with unique superiorities are arousing increasing attention. However, photocorrosion still exists and the extensive use of scarce indium renders a limited prospect.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
Modulating the "trade-off" between activity and durability of Pd-based alloys while eliminating the dissolution of the nonprecious metal element issue is highly significant for the advancement of commercializing anion-exchange membrane fuel cells (AEMFCs). Herein, by harmonizing composition and ligand effects and targeting the stability concerns of Pd-based alloys, we propose PdRhNi ternary medium-entropy-alloy (MEA) networks (PdRhNi ANs) as exceptionally efficient oxygen reduction reaction (ORR) electrocatalysts via ligand effect. The results of theoretical calculations provide compelling evidence that the ligand effect of Ni in PdRhNi ANs, which can endow an inductive effect to reshape the electronic configuration to induce a reduced energy barrier in the rate-determining steps, optimizes the adsorption energy of O-related intermediates and lowers the d-band center of metal species, collectively boosting the anti-CO capacity and the ORR efficiency.
View Article and Find Full Text PDFDalton Trans
December 2024
Lomonosov Moscow State University, Faculty of Physics, 119991 Moscow, Russia.
δ-BiO-based materials have long been a focus of interest as potential solid oxide fuel cell materials due to their high electrical conductivity. Here, extensive studies of thermal stability, polymorphism and conductivity have been carried out for the first time on BiWO ( = La, Pr or Nd) compounds in the ternary BiO-O-WO system, mentioned more than 20 years ago by Watanabe. The obtained single-phase materials were found to be sufficiently dense (more than 94%) and thermally stable (up to 900 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!