Review of the scientific evolution of gene therapy for the treatment of homozygous familial hypercholesterolaemia: past, present and future perspectives.

J Med Genet

Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, 'Sant Joan' University Hospital, Universitat Rovira i Virgili, Institut de Investigació Sanitaria Pere Virgili (IISPV), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain.

Published: November 2019

Familial hypercholesterolaemia (FH) is a devastating genetic disease that leads to extremely high cholesterol levels and severe cardiovascular disease, mainly caused by mutations in any of the main genes involved in low-density lipoprotein cholesterol (LDL-C) uptake. Among these genes, mutations in the LDL receptor () are responsible for 80%-90% of the FH cases. The severe homozygous variety (HoFH) is not successfully treated with standard cholesterol-lowering therapies, and more aggressive strategies must be considered to mitigate the effects of this disease, such as weekly/biweekly LDL apheresis. However, development of new therapeutic approaches is needed to cure HoFH. Because HoFH is mainly due to mutations in the , this disease has been proposed as an ideal candidate for gene therapy. Several preclinical studies have proposed that the transference of functional copies of the gene reduces circulating LDL-C levels in several models of HoFH, which has led to the first clinical trials in humans. Additionally, the recent development of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 technology for genome editing has opened the door to therapies aimed at directly correcting the specific mutation in the endogenous gene. In this article, we review the genetic basis of the FH disease, paying special attention to the severe HoFH as well as the challenges in its diagnosis and clinical management. Additionally, we discuss the current therapies for this disease and the new emerging advances in gene therapy to target a definitive cure for this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2018-105713DOI Listing

Publication Analysis

Top Keywords

gene therapy
12
familial hypercholesterolaemia
8
disease
7
gene
5
hofh
5
review scientific
4
scientific evolution
4
evolution gene
4
therapy treatment
4
treatment homozygous
4

Similar Publications

Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.

Materials And Methods:  This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.

View Article and Find Full Text PDF

Investigation of Genetic Polymorphisms Related GSTM1, GSTT1, GSTP1 Genes and their Association with Radiotherapy Toxicity among Head and Neck Cancer Patients.

Asian Pac J Cancer Prev

January 2025

Department of Molecular Biology & Genetics, Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist- Satara, Pin-415 539, (Maharashtra) India.

Background: In this study we explored the association of polymorphisms of glutathione s transferase gene including GSTM1, GSTT1 and GSTP1 with adverse acute normal tissue reactions resulted from radiotherapy in HNC patients. We assessed the association of GSTM1 and GSTT1 null genotypes and Ile105Val of exon-5 and Ala114Val of exon-6 of GSTP1 gene polymorphisms with the risk of acute skin toxicity reactions after therapeutic radiotherapy in HNC patients.

Methods: Four hundred HNC patients administered with Intensity modulated radiation therapy were enrolled in this study for the evaluation of radiotherapy associated toxicity reactions.

View Article and Find Full Text PDF

Background: Human Lung Carcinoma (LC) is among the most diagnosed cancers across the world among those non-small cell lung cancer (NSCLC) comprises about 85%. Next Generation Sequencing based detection of mutations are now well established in molecular oncology. With the advent of modern diagnostic methods, it is now well known that there are several mutations and gene rearrangements which are associated with the development of LC.

View Article and Find Full Text PDF

Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers.

View Article and Find Full Text PDF

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!