Antibody-based dual-modality (PET/fluorescence) imaging enables both presurgery antigen-specific immuno-PET for noninvasive whole-body evaluation and intraoperative fluorescence for visualization of superficial tissue layers for image-guided surgery. We developed a universal dual-modality linker (DML) that facilitates site-specific conjugation to a cysteine residue-bearing antibody fragment, introduction of a commercially available fluorescent dye (via an amine-reactive prosthetic group), and rapid and efficient radiolabeling via click chemistry with F-labeled -cyclooctene (F-TCO). To generate a dual-modality antibody fragment-based imaging agent, the DML was labeled with the far-red dye sulfonate cyanine 5 (sCy5), site-specifically conjugated to the C-terminal cysteine of the anti-prostate stem cell antigen (PSCA) cys-diabody A2, and subsequently radiolabeled by click chemistry with F-TCO. The new imaging probe was evaluated in a human PSCA-positive prostate cancer xenograft model by sequential immuno-PET and optical imaging. Uptake in target tissues was confirmed by ex vivo biodistribution. We successfully synthesized a DML for conjugation of a fluorescent dye and F. The anti-PSCA cys-diabody A2 was site-specifically conjugated with either DML or sCy5 and radiolabeled via click chemistry with F-TCO. Immuno-PET imaging confirmed in vivo antigen-specific targeting of prostate cancer xenografts as early as 1 h after injection. Rapid renal clearance of the 50-kDa antibody fragment enables same-day imaging. Optical imaging showed antigen-specific fluorescent signal in PSCA-positive xenografts and high contrast to surrounding tissue and PSCA-negative xenografts. The DML enables site-specific conjugation away from the antigen-binding site of antibody fragments, with a controlled linker-to-protein ratio, and combines signaling moieties for 2 imaging systems into 1 molecule. Dual-modality imaging could provide both noninvasive whole-body imaging with organ-level biodistribution and fluorescence image-guided identification of tumor margins during surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785789PMC
http://dx.doi.org/10.2967/jnumed.118.223560DOI Listing

Publication Analysis

Top Keywords

site-specific conjugation
12
click chemistry
12
imaging
11
dual-modality linker
8
enables site-specific
8
antibody fragments
8
noninvasive whole-body
8
antibody fragment
8
fluorescent dye
8
site-specifically conjugated
8

Similar Publications

Background: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine-types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal meningitis incidence globally.

Methods: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population denominators were obtained from surveillance sites globally.

View Article and Find Full Text PDF

A two-step, biocompatible strategy enables site-specific generation of branched and macrocyclic peptide-protein conjugates. Solvent-exposed cysteines on proteins are modified by a small bifunctional reagent at near-physiological pH, followed by cyanopyridine-aminothiol click reactions to create branched or macrocyclic peptide architectures. This method offers design strategies for next-generation protein therapeutics.

View Article and Find Full Text PDF

Purpose: Recent clinical advances with the approval of antibody-drug conjugates targeting Trop-2 such as sacituzumab-govitecan and datopotomab-deruxtecan have garnered tremendous interest for their therapeutic efficacy in numerous tumor types including breast and lung cancers. ImmunoPET can stratify tumor avidity, clarifying patient eligibility for ADC therapy as well as a diagnostic companion during therapy. Slow antibody circulation requires days to reach optimal imaging timepoints.

View Article and Find Full Text PDF

The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!