Although interactions between lipids and membrane proteins (MPs) have been considered crucially important for understanding the functions of lipids, lack of useful and convincing experimental methods has hampered the analysis of the interactions. Here, we developed a surface plasmon resonance (SPR)-based concise method for quantitative analysis of lipid-MP interactions, coating the sensor chip surface with self-assembled monolayer (SAM) with C-chain. To develop this method, we used bacteriorhodopsin (bR) as an MP, and examined its interaction with various types of lipids. The merits of using C-SAM-modified sensor chip are as follows: (1) alkyl-chains of SAM confer a better immobilization of MPs because of the efficient preconcentration due to hydrophobic contacts; (2) SAM provides immobilized MPs with a partial membranous environment, which is important for the stabilization of MPs; and (3) a thinner C-SAM layer (1 nm) compared with MP size forces the MP to bulge outward from the SAM surface, allowing extraneously injected lipids to be accessible to the hydrophobic transmembrane regions. Actually, the amount of bR immobilized on C-SAM is 10 times higher than that on a hydrophilic CM5 sensor chip, and AFM observations confirmed that bR molecules are exposed on the SAM surface. Of the lipids tested, S-TGA-1, a halobacterium-derived glycolipid, had the highest specificity to bR with a nanomolar dissociation constant. This is consistent with the reported co-crystal structure that indicates the formation of several intermolecular hydrogen bonds. Therefore, we not only reproduced the specific lipid-bR recognition, but also succeeded in its quantitative evaluation, demonstrating the validity and utility of this method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.01.042DOI Listing

Publication Analysis

Top Keywords

sensor chip
12
concise method
8
method quantitative
8
quantitative analysis
8
analysis interactions
8
interactions lipids
8
lipids membrane
8
membrane proteins
8
sam surface
8
lipids
6

Similar Publications

Ultrathin, Lightweight Materials Enabled Wireless Data and Power Transmission in Chip-Less Flexible Electronics.

ACS Mater Au

January 2025

Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.

The surge of flexible, biointegrated electronics has inspired continued research efforts in designing and developing chip-less and wireless devices as soft and mechanically compliant interfaces to the living systems. In recent years, innovations in materials, devices, and systems have been reported to address challenges surrounding this topic to empower their reliable operation for monitoring physiological signals. This perspective provides a brief overview of recent works reporting various chip-less electronics for sensing and actuation in diverse application scenarios.

View Article and Find Full Text PDF

Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed , OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years.

View Article and Find Full Text PDF

van der Waals Photonic Bipolar Junction Transistors Capable of Simultaneously Discerning Wavelength Bands and Dual-Function Chip Application.

ACS Nano

January 2025

State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, School of Microelectronics, Fudan University, Shanghai 200433, China.

The exponential growth of the Internet of Things (IoTs) has led to the widespread deployment of millions of sensors, crucial for the sensing layer's perception capabilities. In particular, there is a strong interest in intelligent photonic sensing. However, the current photonic sensing device and chip typically offer limited functionality, and the devices providing their power take up excessive amounts of space.

View Article and Find Full Text PDF

Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.

View Article and Find Full Text PDF

Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!