Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laser-induced fluorescence (LIF) rotary scanners have been successfully used for multiplexed capillary detection. However, these scanners have a limitation that the capillaries have to be assembled in a circular format, which can be inconvenient for certain applications. A linear LIF scanner works well for flat parallel capillary arrays, but motor accelerations/decelerations (for direction changes) and scanning head vibrations introduce high instrumental noises. The number of capillaries that can be scanned by a linear scanner is limited because of the above constraints. We have constructed a cam-based scanner in an attempt to address these issues. A cam-based scanner eliminates the motor accelerations/decelerations but not the scanning head vibrations. In this work, we attach a second scanning head to the cam on the opposite side of the first scanning head to counter-balance the mechanical vibrations. With this modification, we improve the limit of detection by more than 3 times (from 69 pM to 20 pM fluorescein). We also increase the capillary number capacity by more than 6 times; the total number of capillaries that can be scanned is 426 if 150-μm-o.d. capillaries are used or 320 if 200-μm-o.d. capillaries are used. To demonstrate the utility of this instrument, we assemble a 99-capillary array on one capillary holder and perform capillary electrophoresis of two fluorescent dyes; separations in all capillaries are successfully monitored simultaneously. We also apply it for detecting fluorescently labeled proteins resolved by 24 s-dimension capillaries in a chip-capillary hybrid device; two-dimensional separation results are nicely produced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2019.01.128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!