A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FitEllipsoid: a fast supervised ellipsoid segmentation plugin. | LitMetric

FitEllipsoid: a fast supervised ellipsoid segmentation plugin.

BMC Bioinformatics

ITAV, CNRS, Université de Toulouse, 1 Pl. Pierre Potier, Toulouse, 31106, France.

Published: March 2019

Background: The segmentation of a 3D image is a task that can hardly be automatized in certain situations, notably when the contrast is low and/or the distance between elements is small. The existing supervised methods require a high amount of user input, e.g. delineating the domain in all planar sections.

Results: We present FitEllipsoid, a supervised segmentation code that allows fitting ellipsoids to 3D images with a minimal amount of interactions: the user clicks on a few points on the boundary of the object on 3 orthogonal views. The quantitative geometric results of the segmentation of ellipsoids can be exported as a csv file or as a binary image. The core of the code is based on an original computational approach to fit ellipsoids to point clouds in an affine invariant manner. The plugin is validated by segmenting a large number of 3D nuclei in tumor spheroids, allowing to analyze the distribution of their shapes. User experiments show that large collections of nuclei can be segmented with a high accuracy much faster than with more traditional 2D slice by slice delineation approaches.

Conclusions: We designed a user-friendly software FitEllipsoid allowing to segment hundreds of ellipsoidal shapes in a supervised manner. It may be used directly to analyze biological samples, or to generate segmentation databases necessary to train learning algorithms. The algorithm is distributed as an open-source plugin to be used within the image analysis software Icy. We also provide a Matlab toolbox available with GitHub.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419800PMC
http://dx.doi.org/10.1186/s12859-019-2673-0DOI Listing

Publication Analysis

Top Keywords

segmentation
5
fitellipsoid fast
4
supervised
4
fast supervised
4
supervised ellipsoid
4
ellipsoid segmentation
4
segmentation plugin
4
plugin background
4
background segmentation
4
segmentation image
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!