Influence of molecular structure on passive membrane transport: A case study by second harmonic light scattering.

J Chem Phys

Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, USA.

Published: March 2019

We present an experimental study, using the surface sensitive technique, second harmonic light scattering (SHS), to examine the influence of structure on the propensity of a molecule to passively diffuse across a phospholipid membrane. Specifically, we monitor the relative tendency of the structurally similar amphiphilic cationic dyes, malachite green (MG) and crystal violet (CV), to transport across membranes in living cells (E. coli) and biomimetic liposomes. Despite having nearly identical molecular structures, molecular weights, cationic charges, and functional groups, MG is of lower overall symmetry and consequently has a symmetry allowed permanent dipole moment, which CV does not. The two molecules showed drastically different interactions with phospholipid membranes. MG is observed to readily cross the hydrophobic interior of the bacterial cytoplasmic membrane. Conversely, CV does not. Furthermore, experiments conducted with biomimetic liposomes, constructed from the total lipid extract of E. coli and containing no proteins, show that while MG is able to diffuse across the liposome membrane, CV does not. These observations indicate that the SHS results measured with bacteria do not result from the functions of efflux pumps, but suggests that MG possesses an innate molecular property (which is absent in CV) that allows it to passively diffuse across the hydrophobic interior of a phospholipid membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5081720DOI Listing

Publication Analysis

Top Keywords

second harmonic
8
harmonic light
8
light scattering
8
passively diffuse
8
phospholipid membrane
8
biomimetic liposomes
8
hydrophobic interior
8
membrane
5
influence molecular
4
molecular structure
4

Similar Publications

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

December 2024

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

Background: One of the most important surgical steps during thyroidectomy is the safe ligation of vessels. In fact, it is crucial to avoid postoperative bleeding and nerves' injury. The "clamp and tie" technique was first introduced in the 19th century.

View Article and Find Full Text PDF

Advances in Imaging of Traumatic Nerve Injuries.

J Am Acad Orthop Surg

December 2024

From the Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT (Graesser), the Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, MO (Parsons), and the Department of Orthopaedic Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO (Olafsen, Dy, and Brogan).

Traumatic peripheral nerve injuries represent a spectrum of conditions and remain challenging to diagnose and prognosticate. High-resolution ultrasonography and magnetic resonance neurography have emerged as useful diagnostic modalities in the evaluation of traumatic peripheral nerve and brachial plexus injuries. Ultrasonography is noninvasive, is able to rapidly interrogate large areas and multiple nerves, allows for a dynamic assessment of nerves and their surrounding anatomy, and is cost-effective.

View Article and Find Full Text PDF

Background/objectives: The coronavirus disease (COVID-19) pandemic has significantly impacted global health, with Malaysia reporting over 5 million cases as of May 2024. While symptoms like fatigue and breathlessness are commonly reported among COVID-19 patients, limited research exists on the vocal and pulmonary conditions of individuals with long COVID symptoms. This study aims to assess vocal impairments and pulmonary function differences between long COVID patients and healthy controls, addressing gaps in understanding how long COVID affects vocal and respiratory health.

View Article and Find Full Text PDF

Purpose: Parkinson disease (PD) is a progressive neurodegenerative disease. The aim of this study is to investigate the association between acoustic and cortical brain features in Parkinson's disease patients.

Methods: We recruited 19 (eight females, 11 males) Parkinson's disease patients and 19 (eight females, 11 males) healthy subjects to participate in the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!