A simple practical approach to describe transverse (shear) waves in strongly-coupled Yukawa fluids is presented. Theoretical dispersion curves, based on hydrodynamic consideration, are shown to compare favorably with existing numerical results for plasma-related systems in the long-wavelength regime. The existence of a minimum wave number below which shear waves cannot propagate and its magnitude are properly accounted in the approach. The relevance of the approach beyond plasma-related Yukawa fluids is demonstrated by using experimental data on transverse excitations in liquid metals Fe, Cu, and Zn, obtained from inelastic x-ray scattering. Some potentially important relations, scalings, and quasi-universalities are discussed. The results should be interesting for a broad community in chemical physics, materials physics, physics of fluids and glassy state, complex (dusty) plasmas, and soft matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5088141 | DOI Listing |
Ultrasound Med Biol
January 2025
Echosens, Paris, France.
Objective: Although FibroScan (FS), based on Vibration-Controlled Transient Elastography (VCTE), is a widely used non-invasive device for assessing liver fibrosis and steatosis, its current standard-VCTE examination remains timely and difficult on patients with obesity. The Guided-VCTE examination uses continuous shear waves to locate the liver by providing a real-time predictive indicator for shear wave propagation and uses shear wave maps averaging to increase the signal-to-noise ratio in difficult to assess patients. We aimed to evaluate the effectiveness of the new indicator, as well as compare examination times and success rates with both standard-VCTE and Guided-VCTE examinations.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanics of Materials and Constructions (MeMC), Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
There is very limited research in the literature investigating the way acoustic emission signals change when polymer materials are undergoing different fracture modes. This study investigates the capability of acoustic emission to recognize the fracture mode through acoustic emission parameter analysis, and can be considered the first-ever study which examines the impact of different loading conditions, i.e.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.
Instabilities in the form of periodic or irregular waves at the fluid interface have been demonstrated in microchannel electrokinetic flows with conductivity gradients when the applied electric field is above a threshold value. Most prior studies on electrokinetic instabilities (EKI) are restricted to Newtonian fluids though many of the chemical and biological samples in microfluidic applications exhibit non-Newtonian characteristics. We present in this work an experimental study of the effects of fluid shear thinning on the development of EKI waves through the addition of a small amount of xanthan gum (XG) polymer to both the high- and low-concentration Newtonian buffer solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!