We observe the transient evolution of the laser pumped magnetic resonance in a paraffin-coated rubidium vapor cell and analyze the phenomena numerically by using the four-level density matrix. With the increased radio frequency (RF) sweep rate, the traditional Lorentz signal turns to an asymmetric shape at low sweep rate and starts to oscillate at a high sweep rate. The transient oscillation's features, including frequency and the decay time, are studied by suddenly turning on the RF field to the resonance Larmor precession frequency under the different RF field and light field parameters. The experimental result reveals the transient signals' strong dependence on the RF field power and light power. Especially, the transient oscillation frequency primarily depends on the RF field's power and whatever power the laser light is. When the laser power is lower, the transient oscillation frequency is proportional to the RF field's amplitude. These transient evolution signals are also confirmed with the numerical calculations based on the density-matrix equation of motion.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.007087DOI Listing

Publication Analysis

Top Keywords

transient evolution
12
sweep rate
12
magnetic resonance
8
rubidium vapor
8
transient oscillation
8
oscillation frequency
8
transient
7
frequency
5
power
5
evolution optical
4

Similar Publications

Unlabelled: Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution.

View Article and Find Full Text PDF

Adaptive Significance of Non-coding RNAs: Insights from Cancer Biology.

Mol Biol Evol

January 2025

Professor Emeritus, School of Biological Sciences, Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA.

The molecular basis of adaptive evolution and cancer progression are both complex processes that share many striking similarities. The potential adaptive significance of environmentally-induced epigenetic changes is currently an area of great interest in both evolutionary and cancer biology. In the field of cancer biology intense effort has been focused on the contribution of stress-induced non-coding RNAs (ncRNAs) in the activation of epigenetic changes associated with elevated mutation rates and the acquisition of environmentally adaptive traits.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor.

Physiol Plant

January 2025

Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.

Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).

View Article and Find Full Text PDF

Efficient control strategy for electric furnace temperature regulation using quadratic interpolation optimization.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

Electric furnaces play an important role in many industrial processes where precise temperature control is essential to ensure production efficiency and product quality. Traditional proportional-integral-derivative (PID) controllers and their modified versions are commonly used to maintain temperature stability by reacting quickly to deviations. In this study, the real PID plus second-order derivative (RPIDD) controller is introduced for the first time for industrial temperature control applications, which is a novel alternative that has not yet been investigated in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!