The research of Airy beams has attained much attention due to their unique characteristics. Coherent control of Airy beams is important for further light beam manipulation and information processing. In this paper, we experimentally investigate the storage and retrieval of 2D Airy wavepackets in a solid-state medium driven by electromagnetically induced transparency (EIT). The transverse profile of the weak probe pulse is modulated by Airy wavepackets. Under EIT condition, the probe Airy wavepackets are stored into the experimental medium by manipulating the intensity of the control field, and later retrieved by the opposite process. The retrieved Airy wavepackets keep a high similarity compared with those before the storage. Furthermore, the self-healing property of the retrieved Airy wavepackets is investigated. This storage of Airy wavepackets develops the control method of Airy beams, which will be useful in further applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.006370DOI Listing

Publication Analysis

Top Keywords

airy wavepackets
28
airy beams
12
airy
9
storage airy
8
electromagnetically induced
8
induced transparency
8
retrieved airy
8
wavepackets
7
storage
4
wavepackets based
4

Similar Publications

The research of Airy beams has attained much attention due to their unique characteristics. Coherent control of Airy beams is important for further light beam manipulation and information processing. In this paper, we experimentally investigate the storage and retrieval of 2D Airy wavepackets in a solid-state medium driven by electromagnetically induced transparency (EIT).

View Article and Find Full Text PDF

The time-diffraction technique introduced by Porras recently is motivated in this article in terms of the Lorentz invariance of the equation governing the narrow angular spectrum and narrowband temporal spectrum paraxial approximation and it is used to derive finite-energy spatiotemporally confined subluminal, luminal and superluminal Airy wave packets. In addition, a novel exact finite-energy luminal Airy splash mode-type solution to the scalar wave equation is derived using Bateman's conformal transformation.

View Article and Find Full Text PDF

Airy Wave Packets Accelerating in Space-Time.

Phys Rev Lett

April 2018

CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, Florida 32816, USA.

Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile.

View Article and Find Full Text PDF

The time-dependent WKB approximation for a coherent state is expanded to third order around a guiding real trajectory, allowing for the novel treatment of nonlinearity in its semiclassical dynamics, which is generally present in all physical systems far from the classical regime. The result is a closed-form solution consisting of a linear combination of Airy functions and their derivatives multiplied by an exponential. The expression's ability to capture nonlinearity is demonstrated by examining the autocorrelation of initial coherent states in anharmonic systems with few to many contributing periodic orbits.

View Article and Find Full Text PDF

We numerically simulate the propagation of finite energy Airy pulses in optical fibers with cubic-quintic nonlinearity and analyze the effects of quintic nonlinear parameters and soliton order number on their evolution properties. The soliton pulses are observed, whose peak amplitudes and corresponding temporal positions will vary with the propagation distance. Depending on different quintic nonlinearity parameters and soliton order number, the soliton pulse temporal positions exhibit weak decayed oscillations and then nearly linearly shift to leading or trailing edge of the Airy wavepacket, or tend to fixed positions, and the peak amplitudes also exhibit decayed oscillations but with different oscillation amplitude and central values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!