A ring resonator based 4 channel wavelength division multiplexing (WDM) receiver with polarization diversity is demonstrated at 10 Gb/s per channel. By forming a waveguide loop between the two output ports of a polarization splitter-rotator (PSR), the input signals in the quasi-transverse-electric (quasi-TE) and the quasi-transverse-magnetic (quasi-TM) polarizations can be demultiplexed by the same set of ring resonator filters, thus reducing the number of required channel control circuits by half compared to methods which process the two polarizations individually. Large signal measurement results indicate that the design can tolerate a signal delay of up to 30% of the unit interval (UI) between the two polarizations, which implies that compensating for manufacturing variability with optical delay lines on chip is not necessary for a robust operation. The inter-channel crosstalk is found negligible down to 0.4nm (50 GHz) spacing, at which point the adjacent channel isolation is 17 dB, proving the design's compatibility for dense WDM application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.006147 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!