This is a reply to the comment "Ultra-broadband infrared metasurface absorber: comment."
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.005351 | DOI Listing |
Achiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.
Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.
View Article and Find Full Text PDFNano Lett
January 2025
Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
The unique characteristics of metasurfaces to precisely control the amplitude, phase, and polarization of light within a thin, flat footprint make them a promising replacement for bulky optical components. However, fabrication methods of conventional metasurfaces have suffered from low throughput and high costs, limiting scalability and practical application. To address these challenges, an advanced fabrication technique is developed by combining deep-ultraviolet argon fluoride photolithography with wafer-scale nanotransfer printing to facilitate the scalable fabrication of metal-insulator-metal structures.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
In recent years, research on chiral bound states in the continuum (BIC) has surged, leading to the development of various chiral metasurfaces with narrow bandwidths by breaking of in-plane and out-of-plane symmetries. However, the ability to dynamically tune the working band remains relatively unexplored, which is valuable for chiral sensing applications. Optical phase-change materials, with tunable dielectric constants and switchable properties during phase transition, offer the potential for dynamic control of optical metasurfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!