Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photoelectrochemical (PEC) water splitting is one of the most promising hydrogen production methods because of its high efficiency, renewable resources and harmless by-products. Gallium nitride (GaN) is suitable for PEC water splitting because it has excellent stability in electrolyte and band gap energy which straddles the redox potential of water (V = 1.23 V). These characteristics allow this material to split water stably without external bias. However, the stability of GaN is still not sufficient for practical applications. In this study, we investigated the properties of GaN photoelectrodes with aluminum oxide (AlO) thin film as a protection layer for increasing stability. In a long-term stability test, AlO-coated GaN showed more stable photocurrent than that of bare GaN. The total hydrogen production amount was also improved in AlO-coated samples than bare GaN. These results indicate that the AlO protection layer significantly enhances stability and hydrogen production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.00A206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!