Precise delay control is of paramount importance in optical pump-probe measurements. Here, we report on a high-precision delay tracking technique for mechanical scanning measurements in a Mach-Zehnder interferometer configuration. The setup employs a 1.55-µm continuous-wave laser beam propagating along the interferometer arms. Sinusoidal phase modulation at 30 MHz, and demodulation of the interference signal at the fundamental frequency and its second harmonic, enables delay tracking with sampling rates of up to 10 MHz. At an interferometer arm length of 1 m, root-mean-square error values of the relative delay tracking below 10 attoseconds for both stationary and mechanically scanned (0.2 mm/s) operation are demonstrated. By averaging several scans, a precision of the delay determination better than 1 as is reached. We demonstrate this performance with a mechanical chopper periodically interrupting one of the interferometer arms, which opens the door to the combination of high-sensitivity lock-in detection with (sub-)attosecond-precision relative delay determination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.004789 | DOI Listing |
Front Pediatr
January 2025
Division of Pediatric Cardiology, Division of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO, United States.
Background: In adolescents and adults with tetralogy of Fallot (TOF), right ventricle (RV) electromechanical dyssynchrony (EMD) due to right bundle branch block (RBBB) is associated with reduced exercise capacity and RV dysfunction. While the development of RBBB following surgical repair of tetralogy of Fallot (rTOF) is a frequent sequela, it is not known whether EMD is present in every patient immediately following rTOF. The specific timing of the onset of RBBB following rTOF therefore provides an opportunity to assess whether acute RBBB is associated with the simultaneous acquisition of EMD.
View Article and Find Full Text PDFSurgeon
January 2025
Department of Arthritis, Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang City, Shandong Province, 261031, PR China. Electronic address:
Hallux valgus (HV) is the most common foot deformity. It has various pathogenic factors that make its pathogenesis challenging to understand. As the disease progresses, patients experience amplified pain and decreased activities, significantly affecting their quality of life.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Smart Diagnostic and Online Monitoring, Leipzig University of Applied Sciences, Wächterstraße 13, 04107 Leipzig, Germany.
This paper presents a comparative study of different AI models for indoor positioning systems, emphasizing improvements in localization accuracy and processing time. This study examines Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs), and the Kalman filter using a real Received Signal Strength Indicator (RSSI) and 9-axis ICM-20948 sensor. An in-depth analysis is provided in this paper for data cleaning and feature selection to reduce errors for all the models.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Division of Robotics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
Wearable motion capture gloves enable the precise analysis of hand and finger movements for a variety of uses, including robotic surgery, rehabilitation, and most commonly, virtual augmentation. However, many motion capture gloves restrict natural hand movement with a closed-palm design, including fabric over the palm and fingers. In order to alleviate slippage, improve comfort, reduce sizing issues, and eliminate movement restrictions, this paper presents a new low-cost data glove with an innovative open-palm and finger-free design.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
With the advent of the 5G era, high-precision localization based on mobile communication networks has become a research hotspot, playing an important role in indoor emergency rescue in shopping malls, smart factory management and tracking, as well as precision marketing. However, in complex environments, non-line-of-sight (NLOS) propagation reduces the measurement accuracy of 5G signals, causing large deviations in position solving. In order to obtain high-precision position information, it is necessary to recognize the propagation state of the signal before distance measurement or angle measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!