We demonstrate that a phase difference between terahertz signals coupled to the gate and source and gate and drain terminals of a field effect transistor (a TeraFET) induces a plasmon-assisted DC current, which is dramatically enhanced in the vicinity of plasmonic resonances. We describe a TeraFET operation with identical radiation amplitudes at the source and drain antennas but with a phase-shift-induced asymmetry. In this regime, the TeraFET operates as a tunable resonant polarization-sensitive plasmonic spectrometer, operating in the sub-terahertz and terahertz ranges of frequencies. We also propose an effective scheme of a phase-sensitive homodyne detector operating in this phase-asymmetry mode, which allows for a dramatic enhancement of the response. These regimes can be implemented in different materials systems, including silicon. The p-diamond TeraFETs could support operation in the 200 to 600 GHz atmospheric windows, which is especially important for beyond 5G communication systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.004004 | DOI Listing |
Sci Rep
January 2025
Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, 14115-194, Iran.
With the increasing global attention to deep learning and the advancements made in applying convolutional neural networks in electromagnetics, we have recently witnessed the utilization of deep learning-based networks for predicting the spectrum and electromagnetic properties of structures instead of traditional tools like fully numerical-based methods. In this study, a Convolutional Neural Network (CNN is proposed for predicting spoof surface plasmon polaritons, enabling the examination of the absorption spectrum of metallic multilevel-grating structures (MMGS) and designing various sensor devices and absorbers in the shortest time possible. To expedite the training process of this network, a semi-analytical method of rigorous coupled-wave analysis (RCWA) enhanced with the fast Fourier factorization (FFF) technique has been employed, significantly reducing the data generation time for training.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.
Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1, Sub-Lane Xiangshan, Xihu District, Hangzhou, 310024, China.
The integration of mid-infrared (MIR) photodetectors with built-in encryption capabilities holds immense promise for advancing secure communications in decentralized networks and compact sensing systems. However, achieving high sensitivity, self-powered operation, and reliable performance at room temperature within a miniaturized form factor remains a formidable challenge, largely due to constraints in MIR light absorption and the intricacies of embedding encryption at the device level. Here, a novel on-chip metamaterial-enhanced, 2D tantalum nickel selenide (Ta₂NiSe₅)-based photodetector, meticulously designed with a custom-engineered plasmonic resonance microstructure to achieve self-powered photodetection in the nanoampere range is unveiled.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!