Vehicular ad-hoc Networks (VANETs) are an integral part of intelligent transportation systems (ITS) that facilitate communications between vehicles and the internet. More recently, VANET communications research has strayed from the antiquated DSRC standard and favored more modern cellular technologies, such as fifth generation (5G). The ability of cellular networks to serve highly mobile devices combined with the drastically increased capacity of 5G, would enable VANETs to accommodate large numbers of vehicles and support range of applications. The addition of thousands of new connected devices not only stresses the cellular networks, but also the computational and storage requirements supporting the applications and software of these devices. Autonomous vehicles, with numerous on-board sensors, are expected to generate large amounts of data that must be transmitted and processed. Realistically, on-board computing and storage resources of the vehicle cannot be expected to handle all data that will be generated over the vehicles lifetime. Cloud computing will be an essential technology in VANETs and will support the majority of computation and long-term data storage. However, the networking overhead and latency associated with remote cloud resources could prove detrimental to overall network performance. Edge computing seeks to reduce the overhead by placing computational resources nearer to the end users of the network. The geographical diversity and varied hardware configurations of resource in a edge-enabled network would require careful management to ensure efficient resource utilization. In this paper, we introduce an architecture which evaluates available resources in real-time and makes allocations to the most logical and feasible resource. We evaluate our approach mathematically with the use of a multi-criteria decision analysis algorithm and validate our results with experiments using a test-bed of cloud resources. Results demonstrate that an algorithmic ranking of physical resources matches very closely with experimental results and provides a means of delegating tasks to the best available resource.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470697 | PMC |
http://dx.doi.org/10.3390/s19061303 | DOI Listing |
Hum Genomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.
View Article and Find Full Text PDFNetwork
January 2025
Computer Science and Engineering, SA Engineering College, Poonamallee, India.
The optimization on the cloud-based data structures is carried out using Adaptive Level and Skill Rate-based Child Drawing Development Optimization algorithm (ALSR-CDDO). Also, the overall cost required in computing and communicating is reduced by optimally selecting these data structures by the ALSR-CDDO algorithm. The storage of the data in the cloud platform is performed using the Divide and Conquer Table (D&CT).
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Computer Science & Information Technology, The Superior University, Lahore, Pakistan.
Skin cancer is considered globally as the most fatal disease. Most likely all the patients who received wrong diagnosis and low-quality treatment die early. Though if it is detected in the early stages the patient has fairly good chance and the aforementioned diseases can be cured.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.
Modern language models such as bidirectional encoder representations from transformers have revolutionized natural language processing (NLP) tasks but are computationally intensive, limiting their deployment on edge devices. This paper presents an energy-efficient accelerator design tailored for encoder-based language models, enabling their integration into mobile and edge computing environments. A data-flow-aware hardware accelerator design for language models inspired by Simba, makes use of approximate fixed-point POSIT-based multipliers and uses high bandwidth memory (HBM) in achieving significant improvements in computational efficiency, power consumption, area and latency compared to the hardware-realized scalable accelerator Simba.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!