Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Computational Intelligence Re-meets Medical Image Processing A Comparison of Some Nature-Inspired Optimization Metaheuristics Applied in Biomedical Image Registration BACKGROUND: Diffuse lung diseases (DLDs) are a diverse group of pulmonary disorders, characterized by inflammation of lung tissue, which may lead to permanent loss of the ability to breathe and death. Distinguishing among these diseases is challenging to physicians due their wide variety and unknown causes. Computer-aided diagnosis (CAD) is a useful approach to improve diagnostic accuracy, by combining information provided by experts with Machine Learning (ML) methods.
Objectives: Exploring the potential of dimensionality reduction combined with ML methods for diagnosis of DLDs; improving the classification accuracy over state-of-the-art methods.
Methods: A data set composed of 3252 regions of interest (ROIs) was used, from which 28 features were extracted per ROI. We used Principal Component Analysis, Linear Discriminant Analysis, and Stepwise Selection - Forward, Backward, and Forward-Backward to reduce feature dimensionality. The feature subsets obtained were used as input to the following ML methods: Support Vector Machine, Gaussian Mixture Model, k-Nearest Neighbor, and Deep Feedforward Neural Network. We also applied a Deep Convolutional Neural Network directly to the ROIs.
Results: We achieved the maximum reduction from 28 to 5 dimensions using LDA. The best classification results were obtained by DFNN, with 99.60% of overall accuracy.
Conclusions: This work contributes to the analysis and selection of features that can efficiently characterize the DLDs studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0039-1681086 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!