Rationale: Plasma low-density lipoprotein cholesterol (plasma LDL-C), vascular endothelial cells and peripheral blood mononuclear cells (PBMCs), particularly monocytes, play key roles in initiating atherosclerosis, the primary cause of cardiovascular disease (CVD). Although the mechanisms underlying development of atherosclerosis are not well understood, LDL-C is known to influence expression of endothelial microRNAs (miRNAs) and gene-targets of miRNAs to promote cell senescence. However, the impact of LDL-C on expression of PBMC miRNAs and miRNA targeted genes in response to an atherogenic diet is not known. In this study, we used unbiased methods to identify coordinately responsive PBMC miRNA- gene networks that differ between low and high LDL-C baboons when fed a high-cholesterol, high-fat (HCHF) diet.
Methods And Results: Using RNA Seq, we quantified PBMC mRNAs and miRNAs from half-sib baboons discordant for LDL-C plasma concentrations (low LDL-C, n = 3; high LDL-C, n = 3) before and after a 7-week HCHF diet challenge. For low LDL-C baboons, 626 genes exhibited significant change in expression (255 down-regulated, 371 up-regulated) in response to the HCHF diet, and for high LDL-C baboons 379 genes exhibited significant change in expression (162 down-regulated, 217 up-regulated) in response to the HCHF diet. We identified 494 miRNAs identical to human miRNAs and 47 novel miRNAs. Fifty miRNAs were differentially expressed in low LDL-C baboons (21 up- and 29 down-regulated) and 20 in high LDL-C baboons (11 up- and 9 down-regulated) in response to the HCHF diet. Among the differentially expressed miRNAs were miR-221/222 and miR-34a-3p, which were down-regulated, and miR-148a/b-5p, which was up-regulated. In addition, gene-targets of these miRNAs, VEGFA, MAML3, SPARC, and DMGDH, were inversely expressed and are central hub genes in networks and signaling pathways that differ between low and high LDL-C baboon HCHF diet response.
Conclusions: We have identified coordinately regulated HCHF diet-responsive PBMC miRNA-gene networks that differ between baboons discordant for LDL-C concentrations. Our findings provide potential insights into molecular mechanisms underlying initiation of atherosclerosis where LDL-C concentrations influence expression of specific miRNAs, which in turn regulate expression of genes that play roles in initiation of lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420018 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213494 | PLOS |
Hipertens Riesgo Vasc
January 2025
Hospital Pharmacist Manager, Pharmaceutical Department, Asl Napoli 3 Sud., Italy. Electronic address:
Statins are crucial for both the prevention and management of atherosclerotic cardiovascular disease (ASCVD). However, even with optimized statin therapy, a significant residual risk of ASCVD remains, highlighting the need for innovative approaches to lipid-lowering therapies (LLT) that more effectively target low-density lipoprotein cholesterol (LDL-C) and other atherogenic lipoproteins. Recently, novel pharmacologic agents have been introduced for the management of dyslipidemia.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: Low-density lipoprotein cholesterol (LDL-C) has been determined as an established risk factor for acute ischemic stroke (AIS). Despite the recommendation for in-hospital initiation of high-intensity statin therapy in AIS patients, achieving the desired target LDL-C levels remains challenging. Evolocumab, a highly effective and quickly acting agent for reducing LDL-C levels, has yet to undergo extensively exploration in the acute phase of AIS.
View Article and Find Full Text PDFSouth Asians are at higher risk of dyslipidaemia-a modifiable risk factor for cardiovascular diseases (CVDs). We aimed to identify protein targets for dyslipidaemia and CVDs in this population. We used a two-sample Mendelian randomization (MR) approach, supplemented with MR-Egger, weighted median, colocalization, and generalized MR (GMR), to evaluate the effect of 2,800 plasma proteins on high/low/non-high-density lipoprotein cholesterol (HDL-C/LDL-C/nonHDL-C), total cholesterol, and triglycerides.
View Article and Find Full Text PDFClin Appl Thromb Hemost
January 2025
Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China.
Background: Carotid artery stenosis (CAS) may cause many cerebrovascular diseases, and a biomarker for screening and monitoring is needed. This study focused on the clinical significance of long-chain non-coding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in patients with CAS and aimed to search for potential biomarkers of CAS.
Methods: Eighty-six asymptomatic patients with CAS and 60 healthy individuals were enrolled, with corresponding clinical data and serum samples collected.
Trials
January 2025
Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
Background: Early neurological deterioration (END) is a critical determinant influencing the short-term prognosis of acute ischemic stroke (AIS) patients and is associated with increased mortality rates among hospitalized individuals. AIS frequently coexists with coronary heart disease (CHD), complicating treatment and leading to more severe symptoms and worse outcomes. Shared risk factors between CHD and AIS, especially elevated low-density lipoprotein cholesterol (LDL-C), contribute to atherosclerosis and inflammation, which worsen brain tissue damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!