The bump-hole approach is a powerful chemical biology strategy to specifically probe the functions of closely related proteins. However, for many protein families, such as the ATPases associated with diverse cellular activities (AAA), we lack structural data for inhibitor-protein complexes to design allele-specific chemical probes. Here we report the X-ray structure of a pyrazolylaminoquinazoline-based inhibitor bound to spastin, a microtubule-severing AAA protein, and characterize the residues involved in inhibitor binding. We show that an inhibitor analogue with a single-atom hydrogen-to-fluorine modification can selectively target a spastin allele with an engineered cysteine mutation in its active site. We also report an X-ray structure of the fluoro analogue bound to the spastin mutant. Furthermore, analyses of other mutant alleles suggest how the stereoelectronics of the fluorine-cysteine interaction, rather than sterics alone, contribute to the inhibitor-allele selectivity. This approach could be used to design allele-specific probes for studying cellular functions of spastin isoforms. Our data also suggest how tuning stereoelectronics can lead to specific inhibitor-allele pairs for the AAA superfamily.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637947 | PMC |
http://dx.doi.org/10.1021/jacs.8b13257 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
December 2024
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China. Electronic address:
Microtubule-severing enzymes such as spastin, katanin, and fidgetin, characterized by their AAA ATPase domains, are pivotal in modulating microtubule dynamics and behavior across various cellular processes. While spastin and katanin are recognized for their predominant and robust severing of stable microtubules, thereby enhancing microtubule turnover, fidgetin exhibits comparatively weaker severing activity and selectively targets labile microtubules. The interplay among these enzymes and their mutual regulatory mechanisms remains inadequately understood.
View Article and Find Full Text PDFEMBO J
January 2025
Sorbonne Université, INSERM U1130, CNRS UMR8246, Neuroscience Paris Seine - Institut de Biologie Paris-Seine (NPS-IBPS), Paris, France.
The microtubule cytoskeleton is a major driving force of neuronal circuit development. Fine-tuned remodelling of this network by selective activation of microtubule-regulating proteins, including microtubule-severing enzymes, has emerged as a central process in neuronal wiring. Tubulin posttranslational modifications control both microtubule properties and the activities of their interacting proteins.
View Article and Find Full Text PDFMicroPubl Biol
November 2024
Department of Biology, Simmons University, Boston, Massachusetts, United States.
To facilitate investigations of the microtubule severing protein spastin and its specific role in neurons, we aimed to create a strain in which the spastin homolog SPAS-1 is visible and can be degraded with spatial and temporal precision. We used CRISPR-Cas9 to fuse an auxin-inducible degron and mScarlet to the endogenous SPAS-1 protein, enabling degradation of SPAS-1 in neurons during desired life stages. DNA sequencing confirmed in-frame insertion with the SPAS-1 N-terminus and fluorescence microscopy revealed endogenous SPAS-1 throughout the CRISPR-edited worms.
View Article and Find Full Text PDFJ Transl Med
September 2024
Department of Neurology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
Brain
October 2024
National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!