Laser-induced exciplex fluorescence is a well-established technique for liquid-vapor imaging in evaporating sprays that offers phase-dependent spectrally separated emission. However, the accuracy of this approach is limited by substantial crosstalk from the liquid to vapor phase signals. This Letter shows the use of a combination of spectral and temporal filtering to reduce this crosstalk by three orders of magnitude and eliminate the need for temperature-dependent crosstalk corrections in the N,N-diethylmethylamine/fluorobenzene system. The relative decay rates of the liquid and vapor signals are quantified and show crosstalk-free imaging for monodisperse evaporating droplets over a wide range of exciplex tracer concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.001399 | DOI Listing |
Phys Chem Chem Phys
May 2019
Department of Mechanical and Civil Engineering, The California Institute of Technology, Pasadena, California 91125, USA.
PAH dimerization has been widely posited to play an important, even rate-determining role in soot nucleation, despite scanty experimental evidence of the existence of PAH dimers in flames. Laser-induced fluorescence (LIF) offers a promising in situ method of identifying PAH dimers, if dimer fluorescence can be distinguished from the fluorescence of the constituent monomers and other species present. Predicting transition energies for excited dimers (excimers) and excited complexes (exciplexes) represents a significant challenge for theory.
View Article and Find Full Text PDFLaser-induced exciplex fluorescence is a well-established technique for liquid-vapor imaging in evaporating sprays that offers phase-dependent spectrally separated emission. However, the accuracy of this approach is limited by substantial crosstalk from the liquid to vapor phase signals. This Letter shows the use of a combination of spectral and temporal filtering to reduce this crosstalk by three orders of magnitude and eliminate the need for temperature-dependent crosstalk corrections in the N,N-diethylmethylamine/fluorobenzene system.
View Article and Find Full Text PDFPhys Rev Lett
March 2018
Department of Chemistry, Aarhus Univeristy, Langelandsgade 140, 8000 Aarhus C, Denmark.
The carbon disulphide (CS_{2}) dimer is formed inside He nanodroplets and identified using fs laser-induced Coulomb explosion, by observing the CS_{2}^{+} ion recoil velocity. It is then shown that a 160 ps moderately intense laser pulse can align the dimer in advantageous spatial orientations which allow us to determine the cross-shaped structure of the dimer by analysis of the correlations between the emission angles of the nascent CS_{2}^{+} and S^{+} ions, following the explosion process. Our method will enable fs time-resolved structural imaging of weakly bound molecular complexes during conformational isomerization, including formation of exciplexes.
View Article and Find Full Text PDFPhys Rev Lett
July 2008
Institute of Experimental Physics, TU Graz, Petersgasse 16, 8010 Graz, Austria, EU.
We measured laser-induced-fluorescence (LIF) and beam-depletion (BD) spectra of rubidium atoms (5S-5P transition) on the surface of superfluid helium nanodroplets (M-He_{N} with M=Rb). It is known that when M is a lighter alkali atom electronic excitation always leads to detachment of the excited atom (M;{*}). The dissociation energy, few tens cm;{-1}, comes either as photon excess energy or from the barrierless formation of a M;{*}-He exciplex.
View Article and Find Full Text PDFPulsed photoexcitation of hydrocarbon fuels doped with organic molecules exhibits a temperature-dependent fluorescence spectrum that is used as the basis for a weakly intrusive optical thermometer. By use of pulsed excitation from a 308-nm 8-ns XeCl excimer laser with gated detection of the fluorescence emissions from doped n -heptane, we demonstrate that time-resolved measurement of the excited monomer and the redshifted excited-state complex (exciplex) fluorescence emissions can yield sub-1 degrees accuracy for temperatures ranging from 440 K to the vicinity of the critical temperature (540 K). The experiments also show that the exciplex fluorescence spectrum is pressure independent below and above supercritical pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!