Neurodegenerative diseases such as Alzheimer's disease are characterized by the progressive spreading and accumulation of hyper-phosphorylated tau protein in the brain. Anti-tau antibodies have been shown to reduce tau pathology in in vivo models and antibody-mediated clearance of tau exerted by microglia has been proposed as a contributing factor. By subjecting primary microglia cultured in vitro to anti-phospho-tau antibodies in complex with pathological tau, we show that microglia internalise and degrade tau in a manner that is dependent on FcγR interaction and functional lysosomes. It has recently been discussed if anti-tau antibody effector-functions are required for induction of tau clearance. Using antibodies with compromised FcγR binding and non-compromised control antibodies we show that antibody effector functions are required for induction of microglial clearance of tau. Understanding the inflammatory consequences of targeting microglia using therapeutic antibodies is important when developing these molecules for clinical use. Using RNA sequencing, we show that treatment with anti-tau antibodies increases transcription of mRNA encoding pro-inflammatory markers, but that the mRNA expression profile of antibody-treated cells differ from the profile of LPS activated microglia. We further demonstrate that microglia activation alone is not sufficient to induce significant tau clearance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420568 | PMC |
http://dx.doi.org/10.1038/s41598-019-41105-4 | DOI Listing |
J Neuroinflammation
January 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.
View Article and Find Full Text PDFSci Rep
January 2025
INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France.
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.
View Article and Find Full Text PDFRespir Med
January 2025
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Clalit Health Services, Dan Petah Tikva District, Petah Tikva, Israel. Electronic address:
Background: Morbid obesity in adolescents impacts respiratory function, often leading to reduced lung volume and obstructive ventilatory defects. However, standard spirometric values frequently remain within normal ranges.
Objectives: We hypothesized that Lung Clearance Index (LCI) is a more sensitive marker for detecting airway dysfunction in adolescents with morbid obesity than conventional lung function tests.
ACS Chem Neurosci
January 2025
Department of Health Service, Polyclinic, Sector 6, Jhajjar, Haryana 124103, India.
Alzheimer's disease (AD) impacts millions of elderly adults worldwide causing cognitive decline and severe deterioration of activities of daily life. The popular causal hypotheses for several decades include beta-amyloid (Aβ) deposition and tau hyperphosphorylation. AD research and more than 34% of clinical trials in AD are based on these two hypotheses.
View Article and Find Full Text PDFMol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!