Animal studies using chronic social defeat stress (CSDS) in mice showed that brain-derived neurotrophic factor (BDNF) signaling in the mesolimbic dopamine (DA) circuit is important for the development of social aversion. However, the downstream molecular targets after BDNF release from ventral tegmental area (VTA) DA terminals are unknown. Here, we show that depressive-like behaviors induced by CSDS are mediated in part by Gadd45b downstream of BDNF signaling in the nucleus accumbens (NAc). We show that Gadd45b mRNA levels are increased in susceptible but not resilient mice. Intra-NAc infusion of BDNF or optical stimulation of VTA DA terminals in NAc enhanced Gadd45b expression levels in the NAc. Importantly, Gadd45b downregulation reversed social avoidance in susceptible mice. Together, these data suggest that Gadd45b in NAc contributes to susceptibility to social stress. In addition, we investigated the function of Gadd45b in demethylating CpG islands of representative gene targets, which have been associated with a depressive phenotype in humans and animal models. We found that Gadd45b downregulation changes DNA methylation levels in a phenotype-, gene-, and locus-specific fashion. Together, these results highlight the contribution of Gadd45b and changes in DNA methylation in mediating the effects of social stress in the mesolimbic DA circuit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420662 | PMC |
http://dx.doi.org/10.1038/s41598-019-40844-8 | DOI Listing |
Anticancer Res
January 2025
Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Background/aim: Ovarian cancer (OC) is one of the leading gynecological causes of death among women. The current standard treatment for OC is debulking surgery followed by platinum-based chemotherapy treatments; however, despite initial success to treatment many patients experience relapses. Currently, there are no available tests to predict sensitivity or resistance to chemotherapy.
View Article and Find Full Text PDFCytojournal
November 2024
Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China.
Objective: Colorectal cancer (CRC) remains a remarkable challenge despite considerable advancements in its treatment, due to its high recurrence rate, metastasis, drug resistance, and heterogeneity. Molecular targets that can effectively inhibit CRC growth must be identified to address these challenges. Therefore, we aim to reveal the regulatory effect of ribosomal protein L22-like 1 (RPL22L1) on the proliferation and apoptosis of CRC cells and its potential mechanism.
View Article and Find Full Text PDFArq Bras Cardiol
November 2024
The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan - China.
Background: Myocardial fibrosis (MF) occurs throughout the onset and progression of cardiovascular disease, and early diagnosis of MF is beneficial for improving cardiac function, but there is a lack of research on early biomarkers of MF.
Objectives: Utilizing bioinformatics techniques, we identified potential biomarkers for MF.
Methods: Datasets related to MF were sourced from the GEO database.
J Orthop Surg Res
December 2024
Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, No.51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
Background: Osteoarthritis (OA) is a common cause of disability among the elderly, profoundly affecting quality of life. This study aims to leverage bioinformatics and machine learning to develop an artificial neural network (ANN) model for diagnosing OA, providing new avenues for early diagnosis and treatment.
Methods: From the Gene Expression Omnibus (GEO) database, we first obtained OA synovial tissue microarray datasets.
J Cell Mol Med
December 2024
Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
There are three homologous proteins (α, β and γ) in the growth arrest and DNA damage 45 (Gadd45) family. These proteins act as cellular responders to physiological and environmental stimuli. Gadd45β plays a significant role in the pathogenesis of liver diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!