Differences in the metabolism of cancer cells or cancer stem cells (CSCs) as compared to normal cells have provided avenues to safely target cancers. To discover metabolic inhibitors of CSCs, we performed alkaline phosphatase- and tumoursphere-based drug screening using induced cancer stem cell-like cells. From the screening of a RIKEN NPDepo chemical library, we discovered NPD2381 as a novel and selective cancer-stemness inhibitor that targets mitochondrial metabolism. Using our ChemProteoBase profiling, we found that NPD2381 increases the expression of enzymes within the serine biosynthesis pathway. We also found a role for serine in protecting cancer cells from mitochondrial inhibitors. Our results suggest the existence of a compensatory mechanism to increase the level of intracellular serine in response to mitochondrial inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.13361 | DOI Listing |
Chem Biodivers
January 2025
Guizhou Medical University, School of Pharmaceutical Sciences, University Town, Gui'an New District, 550025, Guiyang, CHINA.
An unrevealed dihydroflavone-monoterpene conjugate (1), two unrevealed kavalactones (2-3, including one with an uncommon side chain), and thirteen previously identified compounds (4-16) were extracted from Alpinia katsumadai Hayata. seeds. The two-dimension structures of the new compounds were authenticated utilizing HRESIMS as well as NMR spectral analysis, while their absolute chiral configurations were ascertained either by correlating the experimental and simulated values of electronic circular dichroism (ECD) patterns or conducting X-ray diffraction experiments.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China.
Background: In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC.
Methods: We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets.
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFVet Res Forum
November 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA.
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!