Graphene exhibits a particular optical polarization dependence property, which is that supporting optical polarization states of graphene can be readily altered through tuning the polarity of the imaginary part of its conductivity. The in-fiber Mach-Zehnder interferometer (MZI) possesses extremely high sensitivity to the surrounding refractive index through cladding modes. Combining graphene and the in-fiber interferometer, a graphene-optical fiber hybrid MZI is constructed. Depending on the graphene polarization dependence property, the interference wavelength of the graphene-optical fiber hybrid MZI expresses periodic drift with the in-fiber light linear polarization angle adjusting within 180°. Meanwhile, drift periods corresponding to different interference wavelengths are slightly different, which is primarily due to the superposition of the polarization dependence behaviors of different cladding modes. For different light polarization states, with the in-fiber optical power increasing, the interference wavelengths and contrast intensities of the hybrid MZI transmission spectrum show a polarization independent linear blue shift and a nonlinear decrease, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.58.001808 | DOI Listing |
Sci Rep
January 2025
Department of Biology, The University of Mississippi, University, MS, 38677, USA.
During development, cells of the nervous system begin as unspecified precursors and proceed along one of two developmental paths to become either neurons or glia. Work in the fruit fly Drosophila melanogaster has established the role of the transcription factor Glial cells missing (Gcm) in directing neuronal precursor cells to assume a glial cell fate. Gcm acts on many target genes, one of which is reversed polarity (repo).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics, University of Pretoria, 0002 Pretoria, South Africa.
Much can be learned about molecular aggregates by modeling their fluorescence-type spectra. In this study, we systematically describe the accuracy of various methods for simulating fluorescence-type linear spectra in a dimer system with a complex system-environment interaction, which serves as a model for various molecular aggregates, including most photosynthetic light-harvesting complexes (LHCs). We consider the approximate full cumulant expansion (FCE), complex time-dependent Redfield (ctR), time-independent Redfield, and modified Redfield methods and calculate their accuracy as a function of the site energy gap and coupling, excitonic energy gap, and dipole factor (i.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, WB, India.
In this paper, we demonstrate the performance of several density-based methods in predicting the inversion of S1 and T1 states of a few N-heterocyclic triangulene based fused ring molecules (popularly known as INVEST molecules) with an eye to identify a well performing but cost-effective preliminary screening method. Both conventional linear-response time-dependent density functional theory (LR-TDDFT) and ΔSCF methods (namely maximum overlap method, square-gradient minimization method, and restricted open-shell Kohn-Sham) are considered for excited state computations using exchange-correlation (XC) functionals from different rungs of Jacob's ladder. A well-justified systematism is observed in the performance of the functionals when compared against fully internally contracted multireference configuration interaction singles and doubles and/or equation of motion coupled-cluster singles and doubles (EOM-CCSD), with the most important feature being the capture of spin-polarization in the presence of correlation.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, 250012, Shandong, People's Republic of China.
Background: Preeclampsia (PE) is a severe pregnancy complication characterized by hypertension and proteinuria. PE poses a substantial threat to the health of both mothers and fetuses, and currently, there is no definitive treatment available. Recent studies have indicated that the transcription factor GATA1 may be implicated in the pathological processes of PE, but the underlying mechanism remains elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!