Casting of a donor:acceptor bulk-heterojunction structure from a single ink has been the predominant fabrication method of organic photovoltaics (OPVs). Despite the success of such bulk heterojunctions, the task ofcontrolling the microstructure in a single casting process has been arduous and alternative approaches are desired. To achieve OPVs with a desirable microstructure, a facile and eco-compatible sequential deposition approach is demonstrated for polymer/small-molecule pairs. Using a nominally amorphous polymer as the model material, the profound influence of casting solvent is shown on the molecular ordering of the film, and thus the device performance and mesoscale morphology of sequentially deposited OPVs can be tuned. Static and in situ X-ray scattering indicate that applying (R)-(+)-limonene is able to greatly promote the molecular order of weakly crystalline polymers and form the largest domain spacing exclusively, which correlates well with the best efficiency of 12.5% in sequentially deposited devices. The sequentially cast device generally outperforms its control device based on traditional single-ink bulk-heterojunction structure. More crucially, a simple polymer:solvent interaction parameter χ is positively correlated with domain spacing in these sequentially deposited devices. These findings shed light on innovative approaches to rationally create environmentally friendly and highly efficient electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201808153 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization.
View Article and Find Full Text PDFNat Commun
January 2025
School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China.
As bacterial contamination crises escalate, the development of advanced membranes possessing both high flux and antibacterial properties is of paramount significance for enhancing water sterilization efficiency. Herein, an ultrathin layer of TbPa (an imine-linked covalent organic framework) and nanosized CuO clusters, sequentially deposited onto polyethersulfone membranes, demonstrate exceptional water flux performance, reaching a permeance level of 16000 LHM bar. The deposited TbPa, generating uniformly distributed reduction sites under illumination, facilitates the uniform formation of CuO clusters.
View Article and Find Full Text PDFPlant Dis
January 2025
Hebei Academy of Agricultural and Forestry Sciences, Plant Protection Institute, 437 Dongguan Street, Baoding, Hebei, China, 071000.
Strawberry () is an important economic crop in Hebei, China. In May 2023, root rot was observed in strawberry plantations (cultivar 'Benihoppe') in Shijiazhuang (37°57'23″N, 115°16'34″E), Hebei, China. The incidence of the disease reached up to 30% in the field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Reducing iridium (Ir) loading while maintaining efficiency and stability is crucial for the acidic oxygen evolution reaction (OER). In this study, we develop a synthetic method of sequential electrochemical deposition and high-temperature thermal shock to produce an IrO/Ir-WO electrocatalyst with ∼1.75 nm IrO nanoparticles anchoring on Ir-doped WO nanosheets.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!