Vibrio cholerae is an aquatic bacterium with the potential to infect humans and cause the cholera disease. While most bacteria have single chromosomes, the V. cholerae genome is encoded on two replicons of different size. This study focuses on the DNA replication and cell division of this bi-chromosomal bacterium during the stringent response induced by starvation stress. V. cholerae cells were found to initially shut DNA replication initiation down upon stringent response induction by the serine analog serine hydroxamate. Surprisingly, cells temporarily restart their DNA replication before finally reaching a state with fully replicated single chromosome sets. This division-replication pattern is very different to that of the related single chromosome model bacterium Escherichia coli. Within the replication restart phase, both chromosomes of V. cholerae maintained their known order of replication timing to achieve termination synchrony. Using flow cytometry combined with mathematical modeling, we established that a phase of cellular regrowth be the reason for the observed restart of DNA replication after the initial shutdown. Our study shows that although the stringent response induction itself is widely conserved, bacteria developed different ways of how to react to the sensed nutrient limitation, potentially reflecting their individual lifestyle requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.14241DOI Listing

Publication Analysis

Top Keywords

dna replication
20
stringent response
16
restart dna
12
cell division
8
replication initial
8
initial shutdown
8
vibrio cholerae
8
chromosomes cholerae
8
response induction
8
single chromosome
8

Similar Publications

Understanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.

View Article and Find Full Text PDF

Unlabelled: The persistence of HIV-1 reservoirs during combination anti-retroviral therapy (cART) leads to chronic immune activation and systemic inflammation in people with HIV (PWH), associating with a suboptimal immune reconstitution as well as an increased risk of non-AIDS events. This highlights the needs to develop novel therapy for HIV-1 related diseases in PWH. In this study, we assessed the therapeutic effect of CD24-Fc, a fusion protein with anti-inflammatory properties that interacts with danger-associated molecular patterns (DAMPs) and siglec-10, in chronic HIV-1 infection model using humanized mice undergoing suppressive cART.

View Article and Find Full Text PDF

In duplex DNA, A-T and G-C form Watson-Crick base pairs, and Hoogsteen pairing only dominates upon protein binding or DNA damage. Using NMR, we show that an A-T Hoogsteen base pair previously observed in crystal structures of transposon DNA hairpins bound to TnpA protein forms in solution even in the absence of TnpA. This Hoogsteen base pair, located adjacent to a dinucleotide apical loop, exists in dynamic equilibrium with a minor Watson-Crick conformation (population ∼11% and lifetime ∼55 µs).

View Article and Find Full Text PDF

In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II.

View Article and Find Full Text PDF

Background: Atypical teratoid rhabdoid tumor (ATRT) is the most common malignant brain tumor in infants, and more than 60% of children with ATRT die from their tumor. ATRT is associated with mutational inactivation/deletion of , a member of the SWI/SNF chromatin remodeling complex, suggesting that epigenetic events play a critical role in tumor development and progression. Moreover, disruption of SWI/SNF allows unopposed activity of epigenetic repressors, which contribute to tumorigenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!