A relative energy gradient (REG) study of the planar and perpendicular torsional energy barriers in biphenyl.

Theor Chem Acc

3Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain.

Published: December 2018

Biphenyl is a prototype molecule, the study of which is important for a proper understanding of stereo-electronic effects. In the gas phase it has an equilibrium central torsion angle of ~ 45° and shows both a planar (0°) and a perpendicular (90°) torsional energy barrier. The latter is analysed for the first time. We use the newly proposed REG method, which is an procedure that ranks atomic energy contributions according to their importance in explaining the energy profile of a total system. Here, the REG method operates on energy contributions computed by the interacting quantum atoms method. This method is minimal in architecture and provides a crisp picture of well-defined and well-separated electrostatic, steric and exchange (covalent) energies at atomistic level. It is shown that the bond critical point occurring between the -hydrogens in the planar geometry has been wrongly interpreted as a sign of repulsive interaction. A convenient metaphor of analysing football matches is introduced to clarify the role of a REG analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383956PMC
http://dx.doi.org/10.1007/s00214-018-2383-0DOI Listing

Publication Analysis

Top Keywords

torsional energy
8
reg method
8
energy contributions
8
energy
5
relative energy
4
energy gradient
4
reg
4
gradient reg
4
reg study
4
study planar
4

Similar Publications

The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.

View Article and Find Full Text PDF

A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges.

View Article and Find Full Text PDF

A Novel Dynamic Growth Rod Inducing Spinal Growth Modulation for the Correction of Spinal Deformities.

JOR Spine

March 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China.

Background: Growth rods are the gold standard for treating early-onset scoliosis (EOS). However, current treatments with growth rods do not optimize spinal growth in EOS patients, and frequent distraction surgeries significantly increase complications, imposing considerable economic and psychological burdens on patients. An improved growth rod is urgently required to address the need for dynamic growth and external regulation.

View Article and Find Full Text PDF

In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.

View Article and Find Full Text PDF

The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔR)" and "difference among the main-chain torsion angle" of the aP and aA population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!