Two forms of the beta-glucosidase amygdalin hydrolase (AH I and II), which catalyze the hydrolysis of (R)-amygdalin to (R)-prunasin and D-glucose, have been purified over 200-fold from mature black cherry (Prunus serotina Ehrh.) seeds. These proteins showed very similar molecular and kinetic properties but could be resolved by chromatofocusing and isoelectric focusing. AH I and II were monomeric (Mr 60,000) and had isoelectric points of 6.6 and 6.5, respectively. Their glycoprotein character was indicated by positive periodic acid-Schiff staining and by their binding to concanavalin A-Sepharose 4B with subsequent elution by alpha-Me-D-glucoside. Of the natural glycosidic substrates tested, both enzymes showed a pronounced preference for the endogenous cyanogenic disaccharide (R)-amygdalin. They also hydrolyzed at the same active site the synthetic substrates p-nitrophenyl-beta-D-glucoside and 4-methylumbelliferyl-beta-D-glucoside but were inactive towards (R)-prunasin, p-nitrophenyl-alpha-D-glucoside, and 4-methylumbelliferyl-alpha-D-glucoside. Maximum hydrolytic activity was shown in citrate-phosphate buffer in the pH range 4.5-5.0. AH I and II were inhibited competitively by the reaction product (R)-prunasin and noncompetitively (mixed type) by delta-gluconolactone and castanospermine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(86)90603-xDOI Listing

Publication Analysis

Top Keywords

amygdalin hydrolase
8
black cherry
8
cherry prunus
8
prunus serotina
8
serotina ehrh
8
ehrh seeds
8
comparison kinetic
4
kinetic molecular
4
molecular properties
4
properties forms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!